
Evaluating finite state machine based testing
methods on RBAC systems

Carlos Diego Nascimento Damasceno

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Carlos Diego Nascimento Damasceno

Evaluating finite state machine based testing methods on
RBAC systems

Master dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-
USP, in partial fulfillment of the requirements for the
degree of the Master Program in Computer Science
and Computational Mathematics. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Adenilso da Silva Simão

USP – São Carlos
June 2016

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados fornecidos pelo(a) autor(a)

Damasceno, Carlos Diego Nascimento
D155e Evaluating finite state machine based

testing methods on RBAC systems / Carlos Diego
Nascimento Damasceno; orientador Adenilso da
Silva Simão. – São Carlos – SP, 2016.

96 p.

Dissertação (Mestrado - Programa de Pós-Graduação
em Ciências de Computação e Matemática Computacional)
– Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2016.

1. Model Based Testing. 2. Test Prioritization.
3. Finite State Machine. 4. Access control. 5. RBAC.
I. Simão, Adenilso da Silva, orient. II. Título.

Carlos Diego Nascimento Damasceno

Avaliação de métodos de teste baseado em máquinas de
estados finitos em sistemas RBAC

Dissertação apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Mestre em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientador: Prof. Dr. Adenilso da Silva Simão

USP – São Carlos
Junho de 2016

ACKNOWLEDGEMENTS

∙ Agradeço a Deus, por me conceder a força, determinação e paciência necessárias para
superar todos os desafios que enfrentei até agora.

∙ Agradeço aos meus pais, Eloi e Lucia, por todo o amor e incentivo. Tenho muito orgulho
de vocês! Serei eternamente grato por tudo! Amo vocês!!!

∙ A todos os meus tios, tias, primos e primas, que mesmo estando longe não deixaram de
dar palavras de incentivo até nas horas mais difíceis.

∙ Ao meu orientador Adenilso, por quem tenho uma imensa admiração e respeito, deixo o
meu muito obrigado pela sua dedicação.

∙ Aos demais professores e funcionários do ICMC-USP com quem tive algum contato direto
ou indireto, também deixo meus agradecimentos. Em especial, aos professores Delamaro,
Masiero, Simone e Elisa.

∙ A todos os meus amigos da USP e parceiros de laboratório, em especial, Brauner, Daniel,
Rachel, Clausius, Stevão, Valdemar, Abdalla, Faimison, Sidgley, Sofia, FCarlos, Aline,
Lydia e Frota, que de alguma forma também me ajudaram.

∙ À Kamila, por toda a sua atenção, carinho e paciência.

∙ Aos meus amigos de Belém, pelas muitas conversas e que também ajudaram a fazer minha
vida em São Carlos mais feliz.

∙ A todos os meus demais amigos não citados, mas que também são essenciais na minha
vida.

∙ E ao CNPq, pelo apoio financeiro.

“Mude.

Mas comece devagar,

porque a direção é mais importante

que a velocidade.”

(Edson Marques)

RESUMO

DAMASCENO, C. D. N.. Evaluating finite state machine based testing methods on RBAC
systems. 2016. 96 f. Master dissertation (Master student Program in Computer Science and
Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação (ICMC/USP),
São Carlos – SP.

Controle de Acesso (CA) é um dos principais pilares da segurança da informação. Em resumo,
CA permite assegurar que somente usuários habilitados terão acesso aos recursos de um sistema,
e somente o acesso necessário para a realização de uma dada tarefa será disponibilizado. Neste
contexto, o controle de acesso baseado em papel (do inglês, Role Based Access Control - RBAC)
tem se estabelecido como um dos mais importante paradigmas de controle de acesso. Em
uma organização, usuários recebem responsabilidades por meio de cargos e papéis que eles
exercem e, em sistemas RBAC, permissões são distribuídas por meio de papéis atribuídos aos
usuários. Apesar da aparente simplicidade, enganos podem ocorrer no desenvolvimento de
sistemas RBAC e gerar falhas ou até mesmo brechas de segurança. Dessa forma, processos de
verificação e validação tornam-se necessários. Teste de CA visa identificar divergências entre
a especificação e o comportamento apresentado por um mecanismo de CA. Teste Baseado em
Modelos (TBM) é uma variante de teste de software que se baseia em modelos explícitos de
especificação para automatizar a geração de casos testes. TBM tem sido aplicado com sucesso
no teste funcional, entretanto, ainda existem lacunas de pesquisa no TBM de requisitos não
funcionais, tais como controle de acesso, especialmente de critérios de teste. Nesta dissertação
de mestrado, dois aspectos do TBM de RBAC são investigados: métodos de geração de teste
baseados em Máquinas de Estados Finitos (MEF) para RBAC; e priorização de testes para RBAC.
Inicialmente, dois métodos tradicionais de geração de teste, W e HSI, foram comparados ao
método de teste mais recente, SPY, em um experimento usando políticas RBAC especificadas
como MEFs. As características (número de resets, comprimento médio dos casos de teste e
comprimento do conjunto de teste) e a efetividade dos conjuntos de teste gerados por cada método
para cinco políticas RBAC foram analisadas. Posteriormente, três métodos de priorização de
testes foram comparados usando os conjuntos de teste gerados no experimento anterior. Neste
caso, um critério baseado em similaridade RBAC foi proposto e comparado com a priorização
aleatória e baseada em similaridade simples. Os resultados obtidos mostraram que o método
SPY conseguiu superar os métodos W e HSI no teste de sistemas RBAC. A similaridade RBAC
também alcançou uma detecção de defeitos superior.

Palavras-chave: Teste Baseado em Modelos, Priorização de testes, Máquinas de Estados Finitos,
Controle de Acesso, RBAC.

ABSTRACT

DAMASCENO, C. D. N.. Evaluating finite state machine based testing methods on RBAC
systems. 2016. 96 f. Master dissertation (Master student Program in Computer Science and
Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação (ICMC/USP),
São Carlos – SP.

Access Control (AC) is a major pillar in software security. In short, AC ensures that only
intended users can access resources and only the required access to accomplish some task will
be given. In this context, Role Based Access Control (RBAC) has been established as one of the
most important paradigms of access control. In an organization, users receive responsibilities
and privileges through roles and, in AC systems implementing RBAC, permissions are granted
through roles assigned to users. Despite the apparent simplicity, mistakes can occur during the
development of RBAC systems and lead to faults or either security breaches. Therefore, a careful
verification and validation process becomes necessary. Access control testing aims at showing
divergences between the actual and the intended behavior of access control mechanisms. Model
Based Testing (MBT) is a variant of testing that relies on explicit models, such as Finite State
Machines (FSM), for automatizing test generation. MBT has been successfully used for testing
functional requirements; however, there is still lacking investigations on testing non-functional
requirements, such as access control, specially in test criteria. In this Master Dissertation, two
aspects of MBT of RBAC were investigated: FSM-based testing methods on RBAC; and Test
prioritization in the domain of RBAC. At first, one recent (SPY) and two traditional (W and
HSI) FSM-based testing methods were compared on RBAC policies specified as FSM models.
The characteristics (number of resets, average test case length and test suite length) and the
effectiveness of test suites generated from the W, HSI and SPY methods to five different RBAC
policies were analyzed at an experiment. Later, three test prioritization methods were compared
using the test suites generated in the previous investigation. A prioritization criteria based on
RBAC similarity was introduced and compared to random prioritization and simple similarity.
The obtained results pointed out that the SPY method outperformed W and HSI methods on
RBAC domain. The RBAC similarity also achieved an Average Percentage Faults Detected
(APFD) higher than the other approaches.

Key-words: Model Based Testing, Test Prioritization, Finite State Machine, Access control,
RBAC.

LIST OF FIGURES

Figure 1 – Generic process of Model-Based Testing 22
Figure 2 – Example of complete and strong connected FSM in graphical representation 28
Figure 3 – Examples of FSM Mutants . 30
Figure 4 – Test tree of the test suite generated with W method 32
Figure 5 – ANSI RBAC and Administrative RBAC Models 34
Figure 6 – Complete FSM specifying an RBAC policy 37
Figure 7 – Test Tree of an FSM(P) and four test cases 38
Figure 8 – FSM(P) models generated using Heuristic-based approaches 39
Figure 9 – Example of test prioritization . 40
Figure 10 – XACML policy model . 42
Figure 11 – Comparison of FSM Testing Methods - Schematic overview 46
Figure 12 – Test suite length for each policy (log10) . 50
Figure 13 – Number of resets for each policy (log10) 51
Figure 14 – Average test case length for each policy (log10) 53
Figure 15 – Comparison of Test Prioritization Approaches - Schematic overview 64
Figure 16 – Cumulative effectiveness of the complete test suites for P01 67
Figure 17 – Cumulative effectiveness of the complete test suites for P02 68
Figure 18 – Cumulative effectiveness of the subtest suites for P03 69
Figure 19 – Cumulative effectiveness of the subtest suites for P04 71
Figure 20 – Cumulative effectiveness of the subtest suites for P05 72
Figure 21 – Notations, selection, and generation criteria used on RBAC testing 87
Figure 22 – RBAC-BT use case diagram . 94

LIST OF SOURCE CODES

Source code 1 – RBAC policy example . 35
Source code 2 – Test Sequence Example . 37
Source code 3 – Test Cases Example . 58
Source code 4 – Test Cases Example - RBAC similarity 63
Source code 5 – RBAC policy - ExperiencePoints . 88
Source code 6 – RBAC policy - ExperiencePointsv2 88
Source code 7 – RBAC policy - Masood2009P1 . 89
Source code 8 – RBAC policy - Masood2009P1v2 . 89
Source code 9 – RBAC policy - Masood2009P2 . 89
Source code 10 – RBAC policy - Masood2009P2v2 . 89
Source code 11 – RBAC policy - Masood2010Example1 90
Source code 12 – RBAC policy - ProcureToStock . 90
Source code 13 – RBAC policy - ProcureToStockV2 90
Source code 14 – RBAC policy - SeniorTraineeDoctor 90
Source code 15 – RBAC policy - user11roles2 . 91
Source code 16 – RBAC policy - user11roles2_v2 . 91

LIST OF TABLES

Table 1 – Example of complete and strong connected FSM represented in state transition
table . 28

Table 2 – Example of characterization set (W set) . 31
Table 3 – Pattern representing user-role relationships as pairs of bits 36
Table 4 – APFD value for the test cases example . 41
Table 5 – Summary of the characteristics of the RBAC policies 47
Table 6 – Summary of the FSM and mutants generated from the RBAC policies 48
Table 7 – Test generation duration . 48
Table 8 – Correlation between test suite length and the numbers of inputs and states of

the FSM(P) . 49
Table 9 – Test suite length, numbers of states and inputs of the FSM(P) 49
Table 10 – Correlation between the number of resets and the numbers of inputs and states

of the FSM(P) . 50
Table 11 – Number of resets, numbers of states and inputs of the FSM(P) 51
Table 12 – Correlation between average test case length and the numbers of inputs and

states of the FSM(P) . 52
Table 13 – Average test case length, numbers of states and inputs of the FSM(P) 52
Table 14 – Maximum test case length, numbers of states and inputs of the FSM(P) . . . 53
Table 15 – Generated and equivalent RBAC mutants 54
Table 16 – Simple Dissimilarity of each pair of test cases 59
Table 17 – RBAC Applicability Degree of each test case 62
Table 18 – RBAC Similarity of each pair of test cases 62
Table 19 – Cumulative effectiveness of the P01 complete test suites 65
Table 20 – Cumulative effectiveness of the P02 complete test suites 66
Table 21 – APFD of the complete test suites . 66
Table 22 – Cumulative effectiveness of the P03 subtest suites 70
Table 23 – Cumulative effectiveness of the P04 subtest suites 70
Table 24 – Cumulative effectiveness of the P05 subtest suites 73
Table 25 – APFD of the subtest suites . 73
Table 26 – Papers on RBAC testing . 87
Table 27 – Papers on RBAC testing - Information Extracted 88
Table 28 – Organization of the RBAC-BT repository 93

CONTENTS

1 INTRODUCTION . 21
1.1 Context . 21
1.2 Problem Statement and Motivation 23
1.3 Research Objectives . 24
1.4 Summary of the Obtained Results . 24
1.5 Organization of the Dissertation . 25

2 BACKGROUND . 27
2.1 Finite State Machine Based Testing 27
2.1.1 Mutation Analysis for FSM . 29
2.1.2 FSM-Based Testing Methods . 31
2.1.2.1 W method . 32
2.1.2.2 HSI method . 32
2.1.2.3 SPY method . 32
2.2 Role Based Access Control . 33
2.2.1 FSM Based Testing of RBAC Systems 35
2.2.1.1 Modelling RBAC policy as FSM(P) . 36
2.2.1.2 Test Generation Methods for FSM(P) . 37
2.3 Test Case Prioritization . 39
2.3.1 Similarity based test prioritization . 41
2.4 Final Remarks . 43

3 COMPARING FSM-BASED TESTING METHODS ON RBAC . . . 45
3.1 Experiment Protocol . 46
3.2 Analysis of Results . 47
3.2.1 Access Control Policies Under Test 47
3.2.2 FSM and RBAC Mutants Generation 47
3.2.3 Test Suite Generation . 48
3.2.4 Test Suite Length . 49
3.2.5 Number of Resets . 50
3.2.6 Average Test Case Length . 52
3.2.7 Test Effectiveness . 54
3.3 Discussion . 54

3.4 Threats to Validity . 55
3.5 Final Remarks . 56

4 INVESTIGATING TEST PRIORITIZATION ON RBAC 57
4.1 Similarity-Based Test Prioritization . 58
4.1.1 Simple Dissimilarity . 58
4.1.2 RBAC Similarity . 59
4.1.3 Test Prioritization Algorithm . 62
4.1.4 Random Prioritization . 63
4.2 Experiment Protocol . 63
4.3 Analysis of Results . 65
4.3.1 Analysis of the Complete Test Suites 65
4.3.1.1 Cumulative Effectiveness . 65
4.3.1.2 Average Percentage Faults Detected . 66
4.3.2 Analysis of the Subtest Suites . 67
4.3.2.1 Cumulative Effectiveness . 68
4.3.2.2 Average Percentage Faults Detected . 72
4.4 Discussion . 73
4.5 Threats to Validity . 74
4.6 Final Remarks . 75

5 CONCLUSIONS . 77
5.1 Contributions . 77
5.2 Research Limitations . 78
5.3 Resulting publications and Future work 78

BIBLIOGRAPHY . 81

APPENDIX A SYSTEMATIC REVIEW OF RBAC POLICIES 85
A.1 Research Protocol . 85
A.2 Results Obtained . 86
A.3 Policies Extracted . 88

APPENDIX B RBAC-BT SOFTWARE 93
B.1 RBAC-BT Repository . 93
B.2 RBAC-BT Main Features . 94

21

CHAPTER

1
INTRODUCTION

1.1 Context

Preserving confidentiality, integrity and availability of personal and critical data has
become a mandatory requirement for most industrial-scale information systems. To fulfil this
requirement, access control mechanisms can be used to enforce security policies and protect
data (JANG-JACCARD; NEPAL, 2014). In short, access control ensures that only intended users
can access data and only the permission required to accomplish some task will be given. In this
context, the Role-Based Access Control (RBAC) model has been established as one of the most
important paradigms of access control and the de-facto approach for implementing access control
(FERRAIOLO; KUHN; CHANDRAMOULI, 2007). The RBAC model is conceptually simple: in
an organization, users receive responsibilities and privileges through roles; analogously, in RBAC
domain, permissions are granted via roles assigned to users. Despite its simplicity, the RBAC
model can reduce the complexity of security management routines by grouping privileges in roles
(SAMARATI; VIMERCATI, 2001). Nevertheless, mistakes can occur during the development of
RBAC systems, threatening users’ privacy, leading to faults, denial of access or either security
breaches. Therefore, a careful verification and validation must be executed.

In verification and validation, software systems can be executed using test inputs and
the obtained results can be compared with the expected outcomes to detect non-conformances
between the implemented system and the specified behavior (AMMANN; OFFUTT, 2008). This
process is called software testing and aims at detecting faults that are consequences of mistakes
occurred during the design and implementation of the System Under Test (SUT) (IEEE, 1990).
The software testing process follows four steps (MOUELHI; KATEB; TRAON, 2015): test
generation, test selection, test prioritization, and test assessment.

Test generation consists on the stage in which test cases are designed based on some
coverage criteria. A test case is composed by test inputs and the expected results necessary for

22 Chapter 1. Introduction

a complete execution of the SUT. A set of test cases is called test suite. A coverage criteria

consists on a collection of rules which impose requirements that must be satisfied or covered by
one test suite.

On real-world applications, a large number of test cases tends to be generated and often,
due to time and resources constraints, only a subset of the test cases can be performed. In this
case, two solutions are often performed: Test selection, which focuses on selecting a fixed number
of tests; or Test prioritization, which aims at ordering test cases in terms of test criteria. Test

assessment is the last step in which the fault-detection capability of the test cases is evaluated.

Model Based Testing (MBT) is a variant of software testing which relies on explicit
models that encode the intended behavior and/or the environment of the SUT and automatize
software testing steps, such as test generation (UTTING; PRETSCHNER; LEGEARD, 2012).
The generic process of MBT consist of five steps, illustrated as follows in Figure 1.

Figure 1 – Generic process of Model-Based Testing

Source: Adapted from Utting, Pretschner and Legeard (2012).

The first step consists of (1) creating an explicit test model of the SUT based on the
existing requirements specification. Software requirements are also used as reference for defining
(2) test selection criteria. The test selection criteria are responsible for guiding the automatic test
generation process. They can relate to functionalities of the SUT, the structure of the test model,
data coverage heuristics, pure randomness, or well defined sets of faults, named fault model

1.2. Problem Statement and Motivation 23

(JIA; HARMAN, 2011). Once defined a criterion, test cases can be depicted as (3) test case
specifications. Essentially, a test case specification consists on an abstract and non-executable
description of the test cases. Given a test case specification and the model of the SUT, the
automatic test generation process can be performed to (4) obtain concrete test cases. Concrete
test cases are executed as (5-1) test scripts using an adapter which supports the automatic test
execution process under a given test environment. The test execution process can also be manual.
After execution, a test verdict (5-2) can be given to report test coverage and the acceptance or
failure of test cases.

MBT has been investigated as an alternative for testing security requirements, such as
access control, specially using state based notations, such as Finite State Machines (FSM). FSM
is one of the most used transition based notations in the domain of Model Based Security Testing
(MBST), the MBT of security requirements (DAMASCENO; DELAMARO; SIMÃO, 2014;
FELDERER et al., 2015). Test generation approaches for RBAC policies specified as FSM
models have been investigated and, although costly, they have been very effective on detecting
faults (MASOOD et al., 2009). Recently, Endo and Simao (2013) showed that recent FSM-based
testing methods, such as SPY (SIMÃO; PETRENKO; YEVTUSHENKO, 2009), can reduce
the overall cost of test suites compared to traditional methods, such as W (CHOW, 1978) and
HSI (PETRENKO; BOCHMANN, 1995), when randomly generated FSMs are taken as SUT.
Besides, Cartaxo, Machado and Neto (2011) investigated test prioritization approaches based
on similarity to FSM-based testing and their results pointed out that similarity metrics can be
more effective than random approaches. In addition, Bertolino et al. (2015) obtained similar
results while investigating similarity based approaches for test prioritization in the domain of
the eXtensible Access Control Markup Language (XACML), an XML notation for specifying
access control policies (OASIS, 2013).

1.2 Problem Statement and Motivation

Although the outcomes of Endo and Simao (2013) are important from a theoretical
point of view, they cannot be generalized to the RBAC domain, since the resemblance between
randomly generated FSMs and these specifying RBAC policies is unclear. Therefore, there is a
lack of evidence about how recent and traditional FSM-based testing methods behave on FSM
models specifying RBAC policies. Moreover, since the effectiveness of test coverage criteria is
strongly related to its ability to represent specific domain faults (FELDERER et al., 2015), there
is no guarantee that test prioritization approaches based on similarity metrics can be as effective
in RBAC domain as they were on XACML and random FSM domains. Felderer et al. (2015)
also emphasize that there is a room for research to better understand which variants of coverage
criteria can yield effective and efficient test cases in the context of MBST.

24 Chapter 1. Introduction

1.3 Research Objectives

Given the previously discussed research gaps on FSM-based testing and similarity-based
test prioritization for RBAC, the following general research objective was defined to this Master’s
Dissertation: Investigating test criteria to support FSM-based testing processes in the RBAC

domain. Furthermore, the following topics were studied as specific research objectives:

∙ On comparing FSM-based testing methods on RBAC: Comparing by means of an exper-
iment the characteristics (number of resets, average test case length and test suite length)
and effectiveness of test suites generated by recent and traditional FSM-based testing
methods from RBAC policies specified as FSM models;

∙ On investigating test prioritization criteria on RBAC: Investigating and comparing by
means of an experiment similarity-based test prioritization approaches for RBAC testing.

1.4 Summary of the Obtained Results

The main contributions of this Master’s Dissertation are described bellow:

∙ Based on (MASOOD et al., 2009) and (ENDO; SIMAO, 2013), an experimental study
was designed and performed to compare FSM-based testing methods on RBAC. The W,
HSI and SPY methods were applied on five RBAC policies specified as FSM models and
the characteristics and effectiveness of the test suites generated were evaluated. As test
characteristics, the test suite length, average test case length and number of resets were
considered. The test effectiveness was measured using the fault detection ratio on the
domain of the RBAC fault model (MASOOD et al., 2009). The proposed experimental
protocol and the analysis of the obtained results are respectively presented in Sections 3.1
and 3.2.

∙ A test prioritization criteria named RBAC similarity was proposed based on the similarity
metrics for test prioritization in the domains of FSM and XACML testing (CARTAXO;
MACHADO; NETO, 2011; BERTOLINO et al., 2015). The RBAC similarity consists
of a criteria to evaluate the similarity and the applicability degree of test cases to RBAC
policies under test. The RBAC similarity criteria is presented in Section 4.1.

∙ An experimental study was designed and performed to investigate test prioritization
criteria on the RBAC domain. The RBAC similarity was compared to simple similarity and
random prioritization. The previously generated test suites were considered. The proposed
RBAC similarity, the experimental protocol and the analysis of the obtained results are
respectively presented in Sections 4.1, 4.2 and 4.3.

1.5. Organization of the Dissertation 25

1.5 Organization of the Dissertation
The remainder of this Master’s Dissertation is organized as follows:

∙ Chapter 2: The background necessary to understand the context of the investigation
performed in this master dissertation is presented. It includes concepts of FSM-based
testing, the W, HSI and SPY methods, Role Based Access Control, and Test prioritization.

∙ Chapter 3: The proposed experimental protocol for investigating the FSM-based testing
methods on RBAC and the results obtained are shown.

∙ Chapter 4: The proposed test prioritization approach, RBAC similarity, is introduced in
this chapter. The experimental protocol designed to investigate and compare the proposed
approach against random prioritization and simple similarity and the results obtained are
presented and discussed in this chapter.

∙ Chapter 5: This chapter presents the conclusions obtained with the experimental studies,
research limitations, resulting publications and future work.

∙ Appendix A: The protocol and the results obtained from a systematic search designed to
collect RBAC policies to the experiments performed are shown in this appendix.

∙ Appendix B: The software named RBAC-Based Testing (RBAC-BT) was designed to
support FSM-based test prioritization, execution and analysis on RBAC. The main features
of this software are presented in this appendix.

27

CHAPTER

2
BACKGROUND

Access control systems are one of the most critical security mechanism and major
concerns for building trustworthy software systems. In this context, the RBAC model has
established as one of the most important access control model. Essentially, RBAC uses the
concept of grouping privileges and organizational roles to reduce the complexity of administrative
security routines and intermediate the assignment of permissions and responsibilities to users. In
parallel to these concerns, it is also crucial to guarantee that security mechanisms are correctly
designed, implemented and tested. Access control testing is the software testing process for
access control systems. Different approaches for testing access control systems have been
investigated, although there are still research gaps on the comparison of recent and traditional
FSM-based testing methods and test prioritization approaches for RBAC.

This chapter presents the theoretical background considered in this study and is organized
as follows: Section 2.1 presents the main concepts of Finite State Machine-Based Testing and
three test generation methods: W, HSI and SPY. Section 2.2 introduces the Role Based Access
Control model and approaches for modelling and testing RBAC policies using FSM models. At
last, Section 2.3 presents and discusses some aspects of test prioritization.

2.1 Finite State Machine Based Testing

A Finite State Machine (FSM) is an hypothetical machine M composed by states and
transitions (GILL, 1962). Formally, an FSM can be defined as a tuple M =< S,s0, I,O,D,δ ,λ >

where

∙ S is a finite set of states,

∙ s0 ∈ S is the initial state,

∙ I is the finite set of input symbols,

28 Chapter 2. Background

∙ O is the finite set of output symbols,

∙ D⊆ S× I is the specification domain,

∙ δ : D→ S is the transition function, and

∙ λ : D→ O is the output function.

In each given moment, an FSM has one single current state si ∈ S which can change
to s j ∈ S by applying a defined input symbol x ∈ I in the transition function, δ (si,x) = s j, and
return an output from the output function, λ (s,x) = y such that y ∈ O. An input x is defined for
s if (si,x) ∈ D, which means that in state s there is a defined transition consuming input x. A
set of tuples (si,x,y,s j) can also be used to represent a defined transition outgoing from si to s j

with x and y as input and output symbols, respectively. An FSM is said complete if all inputs
are defined for all the states, otherwise it is named partial. A sequence α = x1x2...xn ∈ I is an
input sequence defined for state s ∈ S, if there exist states s1,s2, ...,sn+1 such that s = s1 and
δ (si,xi) = si+1, for all 1 ≤ i ≤ n. A sequence α = x1x2...xn ∈ I is a transfer sequence from s

to sn+1 if δ (s,α) = sn+1. We say that sn+1 is reachable from s. When every state is reachable
from s0 the FSM is said initially connected and if every state is reachable from all states it is
named strongly connected. Figure 2 and Table 1 shows the graphical representation and the state
transition table of a same FSM where I = {a,b}, O = {0,1}, S = {q0,q1,q2} and s0 = q0.

Figure 2 – Example of complete and strong connected FSM in graphical representation

Source: Elaborated by the author.

Table 1 – Example of complete and strong connected FSM represented in state transition table

s0 = q0 λ δ
PPPPPPPPstate

input
a b a b

q0 0 1 q1 q2
q1 1 1 q1 q2
q2 0 0 q1 q2

Source: Elaborated by the author.

The symbol Ω(s) denotes all the input sequences defined for the state s and ΩM abbrevi-
ates Ω(s0), refering to all defined input sequences for a given FSM M. An FSM M can have a
reset operation, denoted by r, which takes to s0 regardless the current state. The concatenation

2.1. Finite State Machine Based Testing 29

of two sequences α and ω is denoted as αω . A sequence α is a prefix of a sequence β , denoted
by α 6 β , if β = αω , for some given sequence ω . An empty sequence is denoted by ε and
a sequence α is a proper prefix of a sequence β , denoted by α < β , if β = αω for a given
ω ̸= ε . The set of prefix sequences of a set T is defined as pre f (T) = {α | ∃β ∈ T and α < β},
if T = pre f (T), T is prefix-closed. Using the prefix definition and the empty sequence, the
concept of transition and output functions can be extended to input sequences. For a state si ∈ S,
δ (si,ε) = si, and λ (si,ε) = ε . Given a sequence αχ ∈ΩM, the output λ (s0,αχ) is equivalent
to λ (s0,α)λ (δ (s0,α),χ), and the state reached by δ (s0,αχ) is the same as δ (δ (s0,α),χ).

A separating sequence for two states si and s j is a sequence γ such that γ ∈Ω(si)∩Ω(s j)

and λ (si,γ) ̸= λ (s j,γ). The sequence a is a separating sequence for states q0 and q1 of the
FSM in Figure 2. In addition, if γ is able to distinguish every pair of states of a machine, it is a
distinguishing sequence, or simply DS. Formally, if λ (si,γ) ̸= λ (s j,γ) is valid for all pairs of
state si,s j ∈ S, then γ is a distinguishing sequence. Considering the FSM presented in Figure 2,
the sequence a is a separating sequence for states q0 and q1 since λ (q0,a) = 0 and λ (q1,a) = 1.

Two FSM models MS =< S,s0, I,O,D,δ ,λ > and MI =< S′,s′0, I,O
′,D′,δ ′,λ ′ > are

equivalent (MS ≡MI) if for each state of MS there exists an equivalent state in MI or, formally,
∀ si ∈ S, ∃ s j ∈ S′ | si≡ s j. Two states are said equivalent, si≡ s j, if ∀ α ∈ I, λ (si,α) = λ ′(s j,α).
An input sequence α ∈ ΩM starting with a reset symbol r is a test case of M. Given two test
sequences α,β ∈ T , if α is a proper prefix of the test case β , the execution of β implies the
execution of α , thus α can be removed from T without altering the test result. A test suite of M

consist on a finite set T of test cases of M, such that there are no two sequences α,β ∈ T where
α < β . The number of symbols of a sequence α is represented by |α| and describes the length
of the test sequence α . Given a test case α , the cost of executing is calculated as |α|+1, which
stands for the length |α| of the test sequence plus one reset operation (+1). The number of test
cases of one test suite T is represented by |T | and also describes the number of resets of T .

2.1.1 Mutation Analysis for FSM

The test assessment plays an important role in software testing research and fault injection
is one of the most frequently used approaches. These faults can be injected either manually or by
automatically generating variants of the SUT, named mutants (ANDREWS et al., 2006). Such
mutants are generated from the original SUT by performing simple syntactic changes, each
containing a different syntactic modification, using mutation operators.

In the FSM-based testing domain, given a specification M, the symbol ℑ(M) denotes
the set of all deterministic FSMs with the same input alphabet of M for which all sequences
in ΩM are defined. Let m ≥ 1, then ℑm(M) denotes all FSMs of ℑ(M) with at most m states.
Given a specification M with n states, a test suite T ⊆ ΩM is m-complete if for each N ∈ ℑm

distinguishable from M, there exists a test t ∈ T that distinguish M from N. This ℑ(M) set is
named fault domain for M and it can be used to assess the quality of a given test suite. If the

30 Chapter 2. Background

result of running a mutant is different from the result of the original SUT for any test case, the
seeded fault denoted by the mutant is detected and the mutant is said killed. However, some
mutants can be syntactically different but functionally equivalent to the original SUT. These
mutants are named equivalent mutants (JIA; HARMAN, 2011).

The main outcome of the mutation analysis is the mutation score, which indicates the
effectiveness of a test suite. Given the test suites T , the mutation score (or effectiveness) can
be calculated using the equation Teff =

#km
(#tm−#em) . The #km parameter represents the number of

killed mutants, the #tm defines the total number of generated mutants, and #em the number of
mutants equivalent to the original SUT. Thus, the mutation score consists of the ratio of the
number of detected faults over the total number of non-equivalent mutants. An m-complete test
suite has full fault coverage for the defined domain and is able to detect all faults in any FSM
implementation with at most m states. The process of analyzing when mutants are killed and
which test suites trigger such failures is named mutation analysis.

The mutation analysis is frequently used in investigations on FSM-based testing (JIA;
HARMAN, 2011; FABBRI et al., 1994). In FSM-based testing, the following mutation operators
are often used (CHOW, 1978): Change Initial State (CIS), that changes the s0 of an FSM to sk,
such that s0 ̸= sk; Change Output (CO), that modifies the output of a transition (s,x), using a
different function Λ(s,x) instead of λ (s,x); Change Tail State (CTS), that modifies the tail state
of a transition (s,x), using a different function ∆(s,x) instead of δ (s,x); and Add Extra State

(AES), that inserts a new state such the mutant N is equivalent to M. Figures 3a, 3b, 3c, and 3d
respectively show examples of mutants generated from the FSM presented in Figure 2 with the
Change Initial State, Change Output, Change Tail State, and Add Extra State operators. Changes
are marked with an asterisk (*).

Figure 3 – Examples of FSM Mutants

(a) FSM mutant - CIS (b) FSM mutant - CO

(c) FSM mutant - CTS
(d) FSM mutant - AES

Source: Elaborated by the author.

2.1. Finite State Machine Based Testing 31

2.1.2 FSM-Based Testing Methods

FSM-based testing aims at proving the equivalence, or conformance, between FSM
models. In this context, some basic sequences are used to obtain partial information about the
test model. The two main sets of basic sequences are the state cover (Q set) and transition cover
(P set).

A set of input sequences Q is a state cover set of M if for each state si ∈ S there exists
a sequence α ∈ Q such that δ (s0,α) = si and it includes the empty sequence ε to reach the
initial state. A set of inputs P is named transition cover set of M if for each transition (s,x) ∈ D

there exist sequences α,αx ∈ P, such that δ (s0,α) = s, and it includes the empty sequence ε

to reach the initial state. The P set can be generated from the testing tree of an FSM under test
(BROY et al., 2005). The nodes of the testing tree correspond to the states of the FSM, the tree
is rooted at the initial state, and each tree edge correspond to one FSM transition that appear
exactly one single time. The state cover and transition cover sets of the FSM presented in Figure
2 are respectively Q = {ε,a,b} and P = {ε,a,aa,ba,b,ab,bb}.

To identify states and transitions of FSM models, traditional methods, such as W (CHOW,
1978) and HSI (PETRENKO; BOCHMANN, 1995), require some pre-defined sets. These pre-
defined sets are the characterization set and separating families. A characterization set (W set) is
a set of defined input sequences containing at least a sequence which distinguishes each pair of
states of an FSM. Formally, it means that ∀si,s j ∈ S, i ̸= j, ∃α ∈W such that λ (si,α) ̸= λ (s j,α).
A separating family, or harmonized identifiers, is a set of state identifiers Hi for each state si ∈ S

that satisfies the condition ∀si,s j ∈ S,si ̸= s j ∃β ∈ Hi,γ ∈ H j that have a common prefix α such
that α ∈Ω(si)∩Ω(s j) and λ (si,α) ̸= λ (s j,α). The characterization set of the FSM presented
in Figure 2 is W = {a,b}, since a and b inputs are capable of distinguishing every pair of states
of the FSM, as shown in Table 2.

Table 2 – Example of characterization set (W set)

PPPPPPPPPstate
input

a b

q0 0 1
q1 1 1
q2 0 0

Source: Elaborated by the author.

Recent methods, such as SPY (SIMÃO; PETRENKO; YEVTUSHENKO, 2009), rely on
sufficient conditions to support test generation. However, these conditions are not necessary, i.e.
if a test suite does not satisfy them, it may still be m-complete. The W, HSI and SPY methods
are described below.

32 Chapter 2. Background

2.1.2.1 W method

The W method is one of the most classic test generation methods for FSM (CHOW,
1978). It uses the transition cover set (P set) to traverse all the FSM transitions and then it applies
the W set to identify the states reached. The W set is concatenated to the leaves of the testing
tree, which represents the P set. The W method can also be extended to detect an estimated
number of n states in an implementation by using the traversal set

⋃m−n
i=0 (Ii), such that (m−n)

depicts the number of extra states. The set Ii contains all sequences of length i combining the
input symbols of I and the traversal set consists of the union of all sets Ii with sequences of
length ranging from 0 to (m−n). The W set is formed by concatenating the P set, the

⋃m−n
i=0 (Ii),

and the characterization set and is able to detect a total of (m−n) extra states. Assuming the
FSM in Figure 2, no extra states (m = n) or proper prefixes, the test suite generated by the W
method is equals to TW = {aaa,aab,aba,abb,baa,bab,bba,bbb}, and |TW |= 8. The test tree of
TW is shown in Figure 4.

Figure 4 – Test tree of the test suite generated with W method

Source: Elaborated by the author.

2.1.2.2 HSI method

The Harmonized State Identifiers (HSI) method (PETRENKO; BOCHMANN, 1995)
uses state identifiers Hi to distinguish each state si ∈ S of the FSM model. First, the HSI method
concatenates the state cover set to the harmonized identifiers set which is, in the worst case, the
W set itself. Later, the transition cover set is also concatenated with harmonized identifiers to
cover non-traversed transitions. The HSI method can also be used on partial FSM. Assuming the
FSM in Figure 2, no extra states or proper prefixes, the test suite generated by the HSI method is
equals to THSI = {aaa,aba,abb,baa,bba,bbb}, and |THSI|= 6.

2.1.2.3 SPY method

The SPY method (SIMÃO; PETRENKO; YEVTUSHENKO, 2009) is a recent test
generation method able to generate m-complete test suites and to reduce test test suite length by

2.2. Role Based Access Control 33

concatenating sequences on-the-fly. First, all sequences of the state cover set are concatenated
to state identifiers. Later, differently from the existing methods, the traversal set is distributed
over the test set obtained from the concatenation of the Q set with the Hi identifiers based on
sufficient conditions. Thus, test tree branching can be avoided as much as possible and the test
suite length and the number of resets can be reduced.

Experimental studies have indicated that the SPY method can generate test suites on
average 40% shorter, and longer test cases compared to traditional methods, such as W and
HSI (SIMÃO; PETRENKO; YEVTUSHENKO, 2009). Moreover, SPY method can achieve
higher fault detection effectiveness even if the number of extra states is underestimated (ENDO;
SIMAO, 2013).

Assuming the FSM in Figure 2, no extra states or proper prefixes, the test suite generated
by the SPY method is equals to TSPY = {aaaba,abbb,baa,bba}, and |TSPY |= 4.

2.2 Role Based Access Control

Access Control (AC) is one of the most frequently used approaches to guarantee data
confidentiality, integrity and availability (JANG-JACCARD; NEPAL, 2014). Access control
mechanisms are used to implement security policies that control users’ access to resources and en-
able access only for authorized personnel based on security models (SAMARATI; VIMERCATI,
2001).

A security policy defines the high level rules that must be regulated to control the access
to resources. These rules, or simply policies, specify the authorizations and access restrictions
that AC mechanisms must enforce. A security model provides a formal representation of the
access control policy and its operation. This formalization allows the proof of security properties
provided by access control systems. A security mechanism defines the low level functions that
support the implementation of control imposed by the policy and formally stated by the security
model.

The concepts presented above provide many advantages in the development of access
control mechanisms. In particular, the separation between policies and mechanisms introduces
an independence between protection requirements and mechanisms enforcing them. Thus, it is
possible to independently discuss protection requirements from implementation requirements,
compare different access control policies and/or mechanisms enforcing one same policy, and
design mechanisms able to enforce multiple kinds of policies.

Security policies must capture all the different regulations of an organization in order to
be enforced, and guarantee the confidentiality, integrity and availability of data and computational
resources. In this context, the Role-Based Access Control (RBAC) security model is considered
one of the most important innovations on security management (ANDERSON, 2008). The RBAC

34 Chapter 2. Background

model is a security model that uses the concept of grouping privileges to reduce the complexity
of security management tasks (SAMARATI; VIMERCATI, 2001).

In RBAC systems, roles consist on organizational figures (e.g., functions or jobs) assigned

to a set of responsibilities (e.g., permissions). In this sense, roles are used to intermediate the
assignment and revocation of permissions for users. User gain access to the permissions assigned
to his/her roles via sessions activating roles (role activation). Role hierarchies can be established
in order to enable permission inheritance through relationships between senior and junior roles
(e.g., software engineer inherits permissions from programmer). Thus, there is a more natural
mapping between security policies and the organizational structure. These elements are the basic
concepts of the ANSI RBAC model (ANSI, 2004).

To ease security management, special roles and permissions can be defined for admin-
istrative tasks execution. These are named administrative roles and administrative permissions
and constitute the Administrative RBAC model (FADHEL; BIANCULLI; BRIAND, 2015).
In Figure 5, the ANSI RBAC and, within dashed lines, the Administrative RBAC models are
illustrated.

Figure 5 – ANSI RBAC and Administrative RBAC Models

Source: Adapted from Fadhel, Bianculli and Briand (2015).

RBAC policies can also be specified with different types of constraints (FADHEL;
BIANCULLI; BRIAND, 2015; MASOOD et al., 2009). Cardinality constraints can be defined
to limit the number of user-role assignments and role activations. Mutual exclusion relationships
can be specified to avoid the simultaneous assignment or activation of conflicting roles. These
constraints are named Separation of Duty (SoD) constraints (ANSI, 2004). Essentially, a SoD
constraint specifies a set of roles and a number limiting the total number of roles that an user can
be assigned from the set of roles. Constraints specified to avoid the assignment of conflicting
roles are named Static SoD (SSoD) constraints and the constraints to avoid the activation of
conflicting roles are named Dynamic SoD (DSoD) constraints. An example of RBAC policy is
shown in Source code 1.

2.2. Role Based Access Control 35

Source code 1: RBAC policy example

1 U = {u1 ,u2}
2 R = {r1}
3 Pr = {pr1 ,pr2}
4 UR = {(u1 ,r1)}
5 PR = {(r1 ,pr1), (r1 ,pr2)}
6 Su(u1) = Su(u2) = 1
7 Du(u1) = Du(u1) = 1
8 Sr(r1) = 2
9 Dr(r1) = 1

The policy in Source code 1 has two users (line 1), one role (line 2), and two permissions
(line 3). User u1 is assigned to role r1 (line 4) that is assigned to the permissions pr1 and pr2
(line 5). Both users can be assigned to at most one single role (line 6), the same is valid to
role activation (line 7). Role r1 can be assigned to two users (line 8); however, this role can be
activated by one unique user per time (line 9) due to the constraint Dr(r1) = 1.

2.2.1 FSM Based Testing of RBAC Systems

According to Masood et al. (2009), an RBAC security policy can be defined as a 16-tuple
P = (U,R,Pr,UR,PR,≤A,≤I, I,Su,Du,Sr,Dr,SSoD,DSoD,Ss,Ds) where:

∙ U and R are, respectively, the finite sets of users and roles;

∙ Pr is the finite set of permissions;

∙ UR⊆U×R is the set of user-role assignments;

∙ PR⊆ Pr×R is the set of permission-role assignments;

∙ ≤A⊆ R×R and ≤I⊆ R×R are, respectively, the activation and inheritance role hierarchy
relations on roles;

∙ I = {AS,DS,AC,DC,AP,DP} is the finite set of types of requests: user-role assignment
(AS), deassignment (DS), activation (AC), and deactivation (DC), and permission-role
activation (AP) and deactivation (DP);

∙ Su,Du : U → Z+ are the static and dynamic cardinality constraints on users, respectively;

∙ Sr,Dr : R→ Z+ are the static and dynamic cardinality constraints on roles, respectively;

∙ SSoD,DSoD⊆ 2R are the static and dynamic SoD sets, respectively;

∙ Ss : SSoD→ Z+ specifies the cardinality of SSoD sets; and

∙ Ds : DSoD→ Z+ specifies the cardinality of DSoD sets.

36 Chapter 2. Background

Using this representation, mutation analysis can also be performed in RBAC domain.
In RBAC mutation analysis, two types of mutation operators can be used (MASOOD et al.,
2009): Mutation operators and Element modification operators. Given a policy P the mutation

operators are able to generate a set of mutants P′ by replacing users, roles and permissions from
UR, PR, ≤A, and ≤I , and adding, removing or replacing users from SSoD and DSoD sets; and
the element modification operators are able to generate a set of mutants P′ by incrementing or
decrementing cardinality constraints for users (Su, Du), roles (Sr, Dr), SSoD (Ss) and DSoD (Ds)
sets. These operators can be used to model RBAC faults and can be associated to FSM faults
(CHOW, 1978).

2.2.1.1 Modelling RBAC policy as FSM(P)

Using the presented definition, Masood et al. (2009) propose an approach based on the
FSM notation to specify the behavior of RBAC mechanisms enforcing RBAC policies. Given an
RBAC policy P, an FSM(P) consists of an FSM describing all access control decisions which
a mechanism should enforce given the policy P. Essentially, an FSM(P) consists of a tuple
FSM(P) =< SP,s0, IP,O,D,δP,λP > where

∙ SP is the set of states that P allows to reach given its mutable elements;

∙ s0 ∈ S is the initial state where P currently stands given UR and PR;

∙ IP is the input domain formed by all combinations of I, U and R elements of P;

∙ O is the output domain formed by granted and denied decisions;

∙ D⊆ SP× IP is the specification domain;

∙ δP : D→ SP is the state transition function which is total (Complete FSM); and

∙ λP : D→ O is the output function which depends of s0 and the RBAC constraints.

The states of the FSM(P) are labeled using a sequence of pairs of bits, one for each
user-role combination (Table 3). The pair 01 is not used since user-role relationships can only be
activated when they are assigned.

Table 3 – Pattern representing user-role relationships as pairs of bits

Pattern Role Assigned Role Activated
00 No No
10 Yes No
11 Yes Yes
01 - -
Source: Adapted from Masood et al. (2009).

2.2. Role Based Access Control 37

This approach has 3|U |×|R| as upper bound limit to the number of states but the real
number of reachable states of an FSM(P) depends on the mutable elements of P. The FSM(P)

specifying the policy presented in Source code 1 can be seen in Figure 6. Self-loop transitions,
corresponding to denied requests, are not show to keep the figure uncluttered.

Figure 6 – Complete FSM specifying an RBAC policy

Source: Adapted from Masood et al. (2009).

The FSM(P) in Figure 6 has a total of eight states. This number is smaller than the upper
bound nine, since the Dr(r1) = 1 constraint makes the state 1111 unreachable.

2.2.1.2 Test Generation Methods for FSM(P)

Given an FSM(P), any of the FSM testing method presented in Section 2.1.2 can be
applied to test RBAC policies. Figure 7 illustrates the test tree generated from four test cases
(Source code 2) applied on the FSM(P) in Figure 6. Each test input is separated by commas.

Source code 2: Test Sequence Example

1 DS(u2 ,r1)/deny // t0
2 AS(u2 ,r1)/grant , AC(u2 ,r1)/grant , DS(u2 ,r1)/grant // t1
3 DS(u1 ,r1)/grant , DS(u1 ,r1)/deny // t2
4 AC(u1 ,r1)/grant , AS(u2 ,r1)/grant , AC(u2 ,r1)/deny // t3

38 Chapter 2. Background

Moreover, it is important to highlight that, instead of generating FSM(P) mutants, the
RBAC mutation operators are applied on the RBAC policies P. Thus, mutant policies P′ are
generated and then FSM(P′) models can be specified. In this case, a mutant of the RBAC policy
presented in Source code 1 where Dr(r1) = 1 is incremented to Dr(r1) = 2 would generate an
FSM(P) similar to the one presented in Figure 6 but with the state 1111 as reachable. The test
sequence t3 presented in Figure 7 covers the state 1110 and is able to kill a P′ mutant where
Dr(r1) = 2.

Figure 7 – Test Tree of an FSM(P) and four test cases

Source: Elaborated by the author.

Testing RBAC policies with high number of users and roles can also become very costly
since the FSM(P) models are complete. Thus, testing methods also tend to generate very large
test suites (MASOOD et al., 2009). In this sense, two alternative approaches were proposed for
generating test suites at lower cost, one based on heuristics that generate multiple smaller FSM
models instead of a single complete FSM and another based on random test selection.

The heuristic-based approaches allow to reduce test efforts by decreasing the size of
the FSM models (Figure 8). The heuristics for testing RBAC propose five different approaches
for specifying policies: (H1) separating assignments and activations – an FSM MAS (Figure
8a) specifies all assignments and for each MAS state an FSM MACi (Figure 8b) specifies all
possible activations under assumption of each MAS state; (H2) FSM for activation and single test

sequence for assignment – A single FSM MAC (Figure 8b) is specified describing all activation
states for a single state qmax from MAS which defines one maximum number of assignments;
(H3) single test sequence for assignments and activations – a single test sequence including
all user-role pairs for (de)assignments, and (de)activations is built; (H4) FSM for each user –

2.3. Test Case Prioritization 39

One FSM Mui is specified for each user ui of P describing all its possible (de)assignments and
(de)activations (Figure 8c); and (H5) FSM for each role – One FSM Mri is specified for each
role ri of P describing all its possible (de)assignments and (de)activations.

Figure 8 – FSM(P) models generated using Heuristic-based approaches

(a) All assignments (MAS)
(b) All activations (MAC)

(c) All assignments and activations to u1 (Mu1)

Source: Adapted from Masood et al. (2009).

At last, the random test generation approach, named Constrained Random Test Selection
(CRTS), uses a number k > 0 to define a fixed value to the test case length and the total number
of random inputs selected from IP.

2.3 Test Case Prioritization
On real-world applications, a large number of test cases tends to be generated and reused

as the software evolves. However, due to time and resources constraints, often only a subset of
the test cases can be performed. To cope with this issue, researchers have proposed different
techniques to improve the cost-effectiveness of test suites. According to Yoo and Harman (2012),
these techniques can be classified into three groups: (i) Test Suite Reduction: Techniques for

40 Chapter 2. Background

removing redundant test cases permanently; (ii) Test Case Selection: Techniques for selecting
some of the test cases and focus on changed parts of a SUT; and (iii) Test Case Prioritization:
Techniques for identifying an efficient ordering of the test cases to maximize certain properties.

Test suite reduction and test case selection can reduce testing time. However, they also
can omit important test cases that can detect certain types of faults and hence they may not work
effectively (OURIQUES, 2015). On the other hand, test case prioritization aims at finding an
ideal ordering of test cases for testing, so that maximum benefits can be obtained, even if test
execution is prematurely halted at some arbitrary point. Formally, the test prioritization problem
is defined as follows: Given a test suite T , the set PT of permutations of T, and a function

f : PT →R, find a permutation T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT) (T ′′ ̸= T ′) [f (T ′)≥ f (T ′′)].
In this definition, PT represents all the possible orderings of the test suite T and the function
f quantitatively describes the quality of that ordering via an award value. The goal of the
prioritization is to maximize (or minimize) this function f which describes a test criteria (e.g.,
test effectiveness). To illustrate test prioritization, consider a hypothetical program with 10 faults,
five test cases A,B,C,D,E, and three permutations, as shown in Figure 9.

Figure 9 – Example of test prioritization

(a) Faults detected per test case

(b) Prioritized test suite T1 (c) Prioritized test suite T2 (d) Prioritized test suite T3

Source: Elbaum, Malishevsky and Rothermel (2000).

The faults detected per test case are presented in Figure 9a and the fault detection
effectiveness throughout the execution of three different prioritized test suites are presented in
Figures 9b, 9c, and 9d. The fault detection effectiveness as a function of the fraction of the test
suite T 1 = A,B,C,D,E is presented in Figure 9b. After running test case A at first, 20% of the
test cases is performed and 20% of the faults are detected. However, 30% of the faults can be
detected just by executing test case E at first (Figure 9c) and 70% if the test case C is considered
at first (Figure 9d).

2.3. Test Case Prioritization 41

After applying some test prioritization approach, the success of the ordering can be mea-
sured using the Average Percentage Faults Detected (APFD). The APFD is a metric commonly
used in test prioritization research (BERTOLINO et al., 2015; ELBAUM; MALISHEVSKY;
ROTHERMEL, 2002) and it is defined as follows:

APFD =
∑

n−1
i=1 Fi

n× l
+

1
2n

(2.1)

In Equation 2.1, the n parameter describes the total number of fractions that the test suite
is fragmented, the l parameter defines the number of faults under consideration and the Fi value
specifies the number of faults detected by a test fragment i. Table 4 shows the APFD value for
each one of the prioritized test suites T 1, T 2 and T 3. In this example, the APFD values point
that the permutation T3, in Figure 9d, performs better than than T 2 and T 1.

Table 4 – APFD value for the test cases example

Prioritized test suite APFD
T1 0.5
T2 0.64
T3 0.84

Source: Elaborated by the author.

Besides increasing the fault detection effectiveness, many other possible goals can be
considered, such as code coverage, reliability.

2.3.1 Similarity based test prioritization

An approach that is currently considered very promising on test prioritization is based
on the concept of test similarity. Test similarity (or dissimilarity) calculates the resemblance (or
difference) between test cases and, based on this information, permutations are performed on
test suites. In test similarity, the following hypotheses are assumed (BERTOLINO et al., 2015):

∙ Similar test cases are redundant in the sense they cover the same set of functionalities of
an SUT and have resembling capabilities of detecting faults.

∙ There is no additional gain to keep similar test cases, since they do not significantly impact
on the fault detection.

Cartaxo, Machado and Neto (2011) have pointed that similarity-based test prioritization
approaches can be more effective than random prioritization when applied to test sequences au-
tomatically generated for state models, such as Labelled Transition Systems (LTS) (CARTAXO;
MACHADO; NETO, 2011). In this case, the similarity degree (dsd) between two test sequences
i and j is calculated based on the number of identical transitions (nit) and divided by the average

42 Chapter 2. Background

length of the pair of test cases (Equation 2.2). The average test sequence length is used to avoid
small (or large) similarity degrees due to similar short (or long) test sequence lengths. More
extensive investigations on test similarity in LTS domain can be found in Coutinho, Cartaxo and
Machado (2014).

dsd(i, j) =
nit(i, j)

average(|i|+ | j|)
(2.2)

Recently, Bertolino et al. (2015) have also investigated how similarity-based test pri-
oritization can be improved for testing access control systems based on the eXtensible Access
Control Markup Language (XACML). The XACML standard is an XML-based declarative
notation for specifying access control policies and evaluating access requests (OASIS, 2013).
The standard model of a XACML policy is illustrated in Figure 10.

Figure 10 – XACML policy model

Source: Adapted from OASIS (2013).

Essentially, a XACML policy consists of a hierarchical structure with a PolicySet element
at the top level, which can contain PolicySet, Policy, or Target elements. A Policy element
consists of a Target, a set of Rule elements and a Rule combining algorithm. A Target element
specifies the subject, resource, action and environment that a Policy can be applied. A Rule is
composed by a Condition that is evaluated when a XACML request is applicable to one Policy

2.4. Final Remarks 43

and an Effect that is performed if a Condition is evaluated as true. The Rule combining algorithm

defines what decisions are taken when conflicts happen. A XACML request consists of a 4-
tuple (sub ject,resource,action,environment) which specifies a subject requesting to perform
an action over a resource in some given environment. If a XACML request satisfies any Target

of a Policy, then the Rule elements of the given Policy are checked, otherwise it is skipped.

The test prioritization approach proposed by Bertolino et al. (2015) is named XACML

similarity and consist of the following Equation 2.3:

dxs(Ri,R j) = FSM(

0 if dss(Ri,R j) = 0

dss(Ri,R j)+

AppValue(Ri,R j)+

PriorityValue(Ri,R j) otherwise

(2.3)

The XACML similarity considers the (simple) similarity (dss), the applicability degree
(AppValue), and a priority value (PriorityValue) between two XACML requests Ri and R j as
criteria for prioritizing test suites. The simple similarity can be generally defined as follows:

dss :
R×R→{0,1,2,3,4}
(Ri,R j) ↦→ dss(Ri,R j)

(2.4)

The simple similarity gives a value ranging from 0 to 4 which describes the number
of distinct parameters for pairs of access control request. Given two XACML requests R1 =

(student,book,borrow,null) and R2 = (pro f essor,book,buy,null), since sub ject and action are
the only distinct parameters, the simple similarity is equals to dss(R1,R2) = 2. The AppValue

consist on a value which describes how much applicable a pair of XACML requests are to
one XACML policy. And finally, the PriorityValue establishes a priority degree to the pair
of XACML requests. These three values are added in one single number which describes not
simply how much dissimilar are two XACML requests, but how much relevant they are to one
given policy. Experimental investigations have shown simple similarity again outperforming the
random prioritization. The joint calculation of the simple similarity degree and the relevance
(or applicability) of test cases to XACML policies have also shown improvements significantly
superior to the (simple) similarity and comparable to optimal solutions.

2.4 Final Remarks
In this section, we discussed the theoretical foundation considered in this master disserta-

tion. FSM-based testing approaches have been applied for testing RBAC systems but, although
very effective, they also tend to generate significantly large test suites. Recent FSM-based test
methods also tend to generate better test suites with lower number of resets, longer test cases
and shorter test suites for random FSM models. Test prioritization approaches based on test

44 Chapter 2. Background

similarity have been proposed for both contexts, FSM and XACML testing, and experimental
investigations have shown that test similarity can outperform random prioritization, but these
results can be still improved by measuring the relevance (or applicability degree) of test cases to
the SUTs. In this sense, the evidences on FSM and XACML domains motivated the investigation
of recent FSM-based testing methods and test prioritization on RBAC. The concepts discussed
in this chapter were used to design a novel test prioritization approach and two experiments to
compare FSM-based testing and test prioritization approaches for RBAC.

45

CHAPTER

3
COMPARING FSM-BASED TESTING

METHODS ON RBAC

Masood et al. (2009) proposed three testing approaches and a fault model for RBAC
and performed experiments to compare the cost and effectiveness for each of the investigated
approaches. One of the approaches proposes the specification of RBAC policies as complete
FSM models. Although test suites generated from complete FSM are able to detect all faults
from the RBAC fault domain, they also tend to be very large. Besides, a recent study published
by Endo and Simao (2013) pointed out that recent FSM testing methods can reduce the overall
test suite length. In this sense, there is no concrete evidence about how recent and traditional
FSM-based testing methods behave on FSM models specifying RBAC policies.

An experiment was designed to investigate characteristics and effectiveness of test suites
generated by the methods W, HSI and SPY on RBAC. As test characteristics, we considered
the test suite length, the number of resets, and the average test case length. As effectiveness,
we considered the ratio of killed policy mutants over the total number of non-equivalent policy
mutants generated with the RBAC fault model (MASOOD et al., 2009). The following research
question was investigated:

Is there any difference on the characteristics of the test suites generated by SPY, HSI, and

W methods from RBAC policies specified as FSM models?

Since Masood et al. (2009) claim that 100% of effectiveness can always be achieved
as long as all transitions and states of the FSM are covered, no difference was expected on the
effectiveness of the generated test suites. This chapter is organized as follows: In Section 3.1,
the protocol of the proposed experiment is introduced and the results obtained are presented
and analyzed in Section 3.2. Later, discussions about the results are presented in Section 3.3,
followed by the threats to validity (Section 3.4) and the final remarks (Section 3.5).

46 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

3.1 Experiment Protocol
This investigation was designed as a process composed of seven steps (Figure 11): (1)

Selection, analysis, and documentation of RBAC policies, (2) Design and implementation of
one component (rbac2fsm) to automate the conversion of RBAC policies to FSM models, (3)
Design and implementation of one component (rbacMutation) to automate the mutation analysis
of RBAC policies, (4) Generation of RBAC policies mutants, (5) Generation of FSM models
from RBAC policies, (6) Generation of test suites, and (7) Test analysis.

Figure 11 – Comparison of FSM Testing Methods - Schematic overview

Source: Elaborated by the author.

In the first (1) step, scientific papers discussing RBAC testing were systematically
searched and analyzed to extract the RBAC policies to be used in this investigation. In the second
(2) and third (3) steps, the rbac2fsm and rbacMutation modules were designed and developed to
automate the conversion of RBAC policies to FSMs and the mutation analysis, respectively. Later,
these modules were merged into one single software named RBAC-Based Testing (RBAC-BT).
A brief description of the RBAC-BT software can be found in Appendix B. In the fourth (4)
and fifth (5) steps, the RBAC-BT was respectively used to generate RBAC mutants and FSMs
from the selected policies. In case of state explosion, it was decided that constraints should
be included to reduce the number of reachable states. In the sixth (6) step, three FSM testing
methods (W, HSI and SPY) were used to generate test suites from each FSM(P). The same
set of test generation tools used by Endo and Simao (2013) were adopted. A time limit of 24h
for processing each FSM(P) was defined, thus any test process with duration above this limit
should be canceled due to state explosion. In the last seventh (7) step, the characteristics and
effectiveness of the test suites were evaluated using the RBAC-BT tool.

3.2. Analysis of Results 47

3.2 Analysis of Results

The computational environment used in this experiment was an Intel Core i7-4770 CPU
3.40GHz, 8 Gb RAM, 1Tb of hard disk running Ubuntu 14.04 LTS 64 bits.

3.2.1 Access Control Policies Under Test

Seven RBAC policies were extracted from scientific papers discussing policy testing. Due
to the state explosion problem, five policies were adapted with cardinality constraints to reduce
the number of reachable states. After refinement, the adapted version of the RBAC policies were
converted to FSM models. A summary of the policies is presented in Table 5. The original RBAC
policies that had to be adapted are marked with ’+’, the adapted policies are identified with v2

and the occurrence of a given type of constraint (e.g., Su constraints) or characteristic (e.g., more
users than roles (U > R)) are marked with an x. The protocol designed to search for papers and
RBAC policies, the seven original policies identified, and the five refined versions are presented
in Appendix A.

Table 5 – Summary of the characteristics of the RBAC policies

Policy |U | |R| |IP| log10(3
|U |×|R|) |U |> |R| |U |< |R| |U |= |R| ≤A ≤I Su Du Sr Dr SSoD DSoD

01_Masood2010Example1 2 1 8 0.9542 x x x x x
02_SeniorTraineeDoctor 2 2 16 1.9084 x x x x x x
03_ExperiencePointsv2 2 4 32 2.7092 x x x x
04_users11roles2_v2 11 2 88 10.4966 x x x x
05_Masood2009P2v2 2 5 40 3 x x x x x x
06_Masood2009P1v2 3 4 48 3.2375 x x x x
07_ProcureToStockv2 3 5 60 3.5282 x x x x
03_ExperiencePoints+ 3 4 48 3.2375 x x x
04_users11roles2+ 11 3 132 15.745 x
05_Masood2009P2+ 2 6 48 5.7254 x x x x x
06_Masood2009P1+ 5 4 80 9.5424 x x x x x
07_ProcureToStock+ 4 5 80 9.5424 x

Source: Research data.

3.2.2 FSM and RBAC Mutants Generation

Initially, all seven RBAC policies were included in the experiment. Thus, we specified
them in XML format, mutated using the RBAC-BT tool and attempted to convert them to FSM
models. However, due to the state explosion problem, we were able to generate FSM models only
from the policies 01_Masood2010Example1 and 02_SeniorTraineeDoctor. The five remaining
policies spent more than 24h being processed by the RBAC-BT tool. Thus, we refined these
remaining policies with RBAC constraints. The refined RBAC policies were named as 03_-
ExperiencePointsv2, 04_users11roles2_v2, 05_Masood2009P2v2, 06_Masood2009P1v2, and
07_ProcureToStockv2. Essentially, these *-v2 versions were redesigned by including cardinality
constraints, SSoD and DSoD sets and by removing users and roles of the original policies to
reduce the number of reachable states. A summary of the FSMs generated from the RBAC
policies and the total number of mutants generated are shown in Table 6.

48 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

Table 6 – Summary of the FSM and mutants generated from the RBAC policies

Policy name U R log10(3
|U |×|R|) States Transitions Mutants

01_Masood2010Example1 2 1 0.9542 8 64 9
02_SeniorTraineeDoctor 2 2 1.9084 21 336 17
03_ExperiencePointsv2 2 4 2.7092 203 6496 11
04_users11roles2_v2 11 2 10.4966 485 42680 28
05_Masood2009P2v2 2 5 3 857 34280 48
06_Masood2009P1v2 3 4 3.2375 1880 90240 40
07_ProcureToStockv2 3 5 3.5282 5859 351540 14

Source: Research data.

As shown in Table 6, the number of states of the generated FSM models ranged from 8
to 5859 and the number of transitions ranged from 64 to 351540. The number of outputs was
omitted since this modeling approach assumes only two outputs, O = {granted,denied}. The
number of RBAC mutants generated ranged from 9 to 48. The upper limit of the number of states
is shown in logarithmic scale in column log10(3

|U |×|R|). Although 04_users11roles2_v2 had the
highest upper limit, cardinality constraints were defined to all the 11 users and 2 roles limiting
the number of assignments to one. Consequently, it significantly reduced the total number of
reachable states. The RBAC-BT software took around one minute to generate the largest FSM
model, obtained from the policy 07_ProcureToStockv2. All the artifacts used in this experiment
are available on-line1.

3.2.3 Test Suite Generation

Using the same implementations of Endo and Simao (2013), we executed the W, HSI and
SPY methods on each of the seven FSM models generated from the RBAC policies. All methods
were executed assuming no extra states in the implementation. In the end of the process, only
five FSMs were included since the time for test generation to the policies 06_Masood2009P1v2
and 07_ProcureToStockv2 exceeded the limit of 24 hours. The duration of the test generation
ranged from 5 milliseconds, in the fastest case (01_Masood2010Example1), to 21 hours, in the
longest case (05_Masood2009P2v2), and the complete process took approximately 63 hours.
Table 7 shows the duration of the test generation process on each scenario.

Table 7 – Test generation duration

ACUT W HSI SPY
01_Masood2010Example1 137 ms 187 ms 5 ms
02_SeniorTraineeDoctor 306 ms 54 ms 116 ms
03_ExperiencePointsv2 4.3 min 3.2 min 3.4 min
04_users11roles2_v2 10.5 h 1.97 h 2.58 h
05_Masood2009P2v2 5.03 h 21.36 h 21.92 h

Source: Research data.

1 RBAC-BT project: <https://github.com/damascenodiego/rbac-bt/>

https://github.com/damascenodiego/rbac-bt/

3.2. Analysis of Results 49

After test generation, the RBAC-BT software was used to evaluate the W, HSI, and SPY
methods. The average test case length, number of resets, and test suite length are presented in the
following sections. Three correlation coefficients were calculated using the R statistical software:
Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC) and Kendall
Correlation Coefficient (KCC).

3.2.4 Test Suite Length

Table 8 shows the correlation between the Test Suite Length (TS) and the numbers of
states and inputs of the FSM(P) models. On average, there was a very strong positive correlation
between test suite length and both the number of inputs, and number of states. Although by using
cardinality constraints and SoD sets the number of reachable states can be reduced, such as in
P04, the number of states and inputs of FSM(P) will be always directly proportional to |U |× |R|
and, consequently, the test suite length will also tend to increase together.

Table 8 – Correlation between test suite length and the numbers of inputs and states of the FSM(P)

Correlation Inputs / TS Correlation States / TS
method PCC SCC KCC PCC SCC KCC

W 0.9502413749 1 1 0.7174809988 0.9 0.8
HSI 0.9589815946 1 1 0.6821071317 0.9 0.8
SPY 0.9066627043 1 1 0.8233373615 0.9 0.8

TS: Test Suite Length
Source: Research data.

In Table 9 and Figure 12, the number of resets for each method and policy are respectively
presented in tabular and graphical format. The length of the test suites generated by W and HSI
for P04 were approximately 5.48 and 2.54 times greater than the SPY test suites. Moreover, a
nonlinear behavior can also be identified when the test suite length is analysed as a function of
the number of states in P04, reason why the correlation values were lower while compared to the
inputs. In this sense, SPY generated shorter test suites and the following order can be observed
SPYT S < HSIT S <WT S.

Table 9 – Test suite length, numbers of states and inputs of the FSM(P)

Policy States Inputs W - TS HSI - TS SPY - TS
01_Masood2010Example1 8 8 1240 753 542
02_SeniorTraineeDoctor 21 16 14704 8238 5841
03_ExperiencePointsv2 203 32 776074 333550 213799
04_users11roles2_v2 485 88 13125662 6085633 2392981
05_Masood2009P2v2 857 40 7086325 2970528 1735818
TS: Test Suite Length

Source: Research data.

50 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

Figure 12 – Test suite length for each policy (log10)

Source: Research data.

3.2.5 Number of Resets

Table 10 shows the correlation between the Number of Resets (NR) and the numbers of
states and inputs of the FSM(P) models. On average, there was a very high positive correlation
between the number of resets and both number of inputs and states. The methods W and HSI
presented a stronger correlation between the numbers of resets and inputs. The nonlinearity
detected on P04 test suite length only persisted for the W and HSI testing methods. In SPY
method there was a very strong correlation between states and resets. Thus, our results pointed
out that the number of resets tends to increase as long as the numbers of states and inputs
increase.

Table 10 – Correlation between the number of resets and the numbers of inputs and states of the FSM(P)

Correlation Inputs / NR Correlation States / NR
method PCC SCC KCC PCC SCC KCC

W 0.9716244957 1 1 0.5953165293 0.9 0.8
HSI 0.9720827105 1 1 0.5809491555 0.9 0.8
SPY 0.7655276825 0.9 0.8 0.9552781412 1 1

NR: Number of Resets
Source: Research data.

3.2. Analysis of Results 51

Table 11 and Figure 13 show the number of resets of each test suites generated to the five
policies in tabular and graphical format. On average, SPY tends to generate test suites with 42.3%
the lenght of HSI test suites and 21.5% the length of the W ones. These outcomes corroborate
with Simão, Petrenko and Yevtushenko (2009)’s results where SPY test suites presented a number
of resets approximately 40% lower than HSI test suites. Since SPY focuses on reducing branches
of testing trees, a decrement of resets can be expected.

Figure 13 – Number of resets for each policy (log10)

Source: Research data.

Table 11 – Number of resets, numbers of states and inputs of the FSM(P)

Policy States Inputs W - NR HSI - NR SPY - NR
01_Masood2010Example1 8 8 285 176 93
02_SeniorTraineeDoctor 21 16 2528 1408 751
03_ExperiencePointsv2 203 32 119586 51451 24001
04_users11roles2_v2 485 88 2236388 993492 138766
05_Masood2009P2v2 857 40 835600 353836 159463
NR: Number of Resets

Source: Research data.

In P04 scenario, the methods W and HSI generated test suites with the highest number
of resets. A reason for that can be the disparity of self-loops in policy P04 resulted from the
cardinality constraints which significantly limit user-role assignments and, consequently, the

52 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

number of reachable states. These outcomes corroborated previous investigations where SPY
method generated test suites with lower number of resets when compared to W and HSI (ENDO;
SIMAO, 2013), thus Endo and Simao (2013)’s order SPYNR < HSINR <WNR remained valid.

3.2.6 Average Test Case Length

Table 12 shows the correlation between the Average Test Case Length (L) and the
numbers of states and inputs of the FSM(P) models. On average, there was a very strong positive
correlation between average test case length and the number of states while the correlation
between average test case length and inputs was strong.

Table 12 – Correlation between average test case length and the numbers of inputs and states of the FSM(P)

Correlation Inputs / L Correlation States / L
Method PCC SCC KCC PCC SCC KCC

W 0.2679576377 0.7 0.6 0.8501227411 0.9 0.8
HSI 0.3488648294 0.7 0.6 0.8668356622 0.9 0.8
SPY 0.9948791896 1 1 0.5989328388 0.9 0.8

L: Average Test Case Length
Source: Research data.

SPY test suites presented a very strong correlation between inputs and average test case
length (over 0.99) and moderate correlation to the number of states. In this sense, it can be
expected longer test sequences from SPY method as long as the numbers of inputs and states
increase. Thus, even in RBAC domain it can be expected SPY test suites longer than W and
HSI as long as the number of users and roles increase. Methods W and HSI presented a weak
correlation to the number of inputs. A reason for that can be the low variation of the average
test case length values. This behavior can be seen in Table 13 and Figure 14 where the average
length does not change significantly for W and HSI. On the other hand, the average length of
SPY test cases increases in a higher rate. These outcomes contradict some results of previous
investigations where a negative correlation was found between average test case length and
number of inputs (ENDO; SIMAO, 2013).

Table 13 – Average test case length, numbers of states and inputs of the FSM(P)

Policy States Inputs W - L HSI - L SPY - L
01_Masood2010Example1 8 8 3.350877193 3.278409091 4.827956989
02_SeniorTraineeDoctor 21 16 4.816455696 4.850852273 6.777629827
03_ExperiencePointsv2 203 32 5.489672704 5.482867194 7.907920503
04_users11roles2_v2 485 88 4.869134515 5.125497739 16.24472133
05_Masood2009P2v2 857 40 7.480522978 7.395211341 9.885396612
L: Average Test Case Length

Source: Research data.

3.2. Analysis of Results 53

Figure 14 – Average test case length for each policy (log10)

Source: Research data.

The maximum test case length also did not change significantly. Table 14 shows that the
maximum test case length of W and HSI methods were similar. On the other hand, SPY method
presented a maximum test case length 15 times greater than W and HSI, on average. In P04 case,
SPY test cases were 43 times longer than the ones generated by traditional methods. Moreover,
although SPY method tends to generate longer test cases, their overall cost (test suite length) also
tend to decrease. These characteristics are useful on verification and validation processes where
test automation is performed. In this sense, the order WL < HSIL < SPYL also remains valid.

Table 14 – Maximum test case length, numbers of states and inputs of the FSM(P)

Policy States Inputs W - max(L) HSI - max(L) SPY - max(L)
01_Masood2010Example1 8 8 4 4 14
02_SeniorTraineeDoctor 21 16 8 8 32
03_ExperiencePointsv2 203 32 7 7 98
04_users11roles2_v2 485 88 6 6 261
05_Masood2009P2v2 857 40 12 12 106
max(L): Maximum Test Case Length

Source: Research data.

54 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

3.2.7 Test Effectiveness

Given the test suites T generated by the W, HSI and SPY methods, the test effectiveness
was calculated using the mutation score formula Teff = #km/(#tm−#em) where #km represented
the number of killed mutants, #tm the total number of generated mutants, and #em the number
of mutants equivalent to the original policy. Table 15 shows the number of generated and
non-equivalent mutants for each policy.

Table 15 – Generated and equivalent RBAC mutants

Policy name Generated Mutants Non-Equivalent Mutants
01_Masood2010Example1 9 7
02_SeniorTraineeDoctor 17 9
03_ExperiencePointsv2 11 8
04_users11roles2_v2 28 26
05_Masood2009P2v2 48 44

Source: Research data.

Each test suite generated by the W, HSI and SPY testing methods were applied on the
RBAC policies and the number of killed mutants was measured using the RBAC-BT software.
At the end, 100% of effectiveness was obtained on all scenarios, corroborating with Masood et

al. (2009) assertion that as long as one testing method achieves transition and state coverage,
the fault detection effectiveness for simple RBAC faults will remain the same. In this sense,
any of the testing methods can be used for testing RBAC policies and guarantee complete fault
detection in RBAC fault domain. At the same time, the overall cost assigned to test execution can
be reduced by adopting recent testing methods, such as SPY, instead of the most traditional ones.

3.3 Discussion
Previous experimental investigations on FSM-based testing methods on RBAC (MA-

SOOD et al., 2009) showed that FSM models specifying RBAC policies can be used to generate
complete test suites considering the RBAC fault domain. However, the test suites generated
by these FSM testing methods tend to become very large. At the same time, recent studies
also showed that modern testing methods can reduce overall test suite length for randomly
generated state machines (ENDO; SIMAO, 2013), but no empirical studies evaluate these testing
methods in the RBAC domain. Moreover, as the existing evidence on evaluating FSM-based
testing methods were generated considering random FSM models, these conclusions can not be
necessarily generalized to FSM(P), thus we detected that empirical investigations in this domain
were necessary.

In this experiment, our results corroborate Endo and Simao (2013)’s conclusions, but
some divergences were also detected. The SPY testing method enabled significant reduction
of the overall test costs. On average, the SPY method reduced the test suite length by 61%

3.4. Threats to Validity 55

compared to HSI, and by 31% compared to W. The length of the SPY test cases also duplicated,
on average, compared to W and HSI. Since FSM(P) has both the number of states and inputs
directly proportional to |U |× |R|, test dimensions will always tend to increase as long as the
number of users and roles increase, even if RBAC constraints are defined.

The effectiveness of the test suites also corroborated with Masood et al. (2009) where
100% effectiveness was found. In this sense, as long as an FSM testing method is able to generate
test suites and guarantees state and transition coverage, test effectiveness will remain the same.
However, the SPY method was able to generate longer test cases and lower number of resets,
thus a significant reduction of test effort can be achieved. These outcomes point out that SPY
can significantly improve access control testing processes by reducing test cost.

3.4 Threats to Validity

The threats to validity (WOHLIN et al., 2014) identified to this investigation are discussed
in this section.

Conclusion Validity: Threats to this validity relate with the ability draw correct conclu-
sions about the relation between the treatment (e.g., test generation methods and policies under
test) and the outcomes (e.g., test characteristics and effectiveness). The case studies used five
RBAC policies using different types of constraints (See Table 5). None of the five policies used
constraints related to the hierarchical RBAC. The experiments selected seven policies but only
tested five policies due to the state explosion problem during the FSM generation process, thus
some of the policies had to be refined in order to balance the number of states and transitions.
Test lengths and number of resets can increase on production systems (e.g., RBAC policies with
high numbers of users, roles and permissions) but effectiveness will not change as long as tests
cover all transitions and states, although it the costs can significantly increase.

Internal Validity: Threats to internal validity are related with influences that can affect
independent variables with respect to causality. They threat conclusions about a possible causal
relationship between treatment and outcome, such as effectiveness of FSM testing methods in
RBAC domain. In order to mitigate this category of threats, we have designed the RBAC-BT tool
based on standards, such as ANSI RBAC (ANSI, 2004), and peer reviewed scientific papers. A
verification and validation process was also performed during the development of the RBAC-BT
tool. The testing process of the RBAC-BT tool was performed considering some invariants of
FSM models describing RBAC policies (e.g., transitions with deny output symbol are self-loops,
transitions with grant output symbol are never self-loops).

External Validity: It concerns with the generalization of the outcomes to other scenarios
(e.g., policies or methods). The evaluation was performed using RBAC policies using different
types of constraints. Test characteristics may change on different policies, specially policies with
greater number of users and roles. Moreover, we did not perform tests on prototypes, production

56 Chapter 3. Comparing FSM-Based Testing Methods on RBAC

software or real world policies.

Construct Validity: Construct validity concerns with generalizing outcomes to the concept
or theory behind the experiment. Fault detection was measured using mutation analysis (e.g.,
simple RBAC faults) which is a common assessment approach on software testing investigations
(JIA; HARMAN, 2011).

3.5 Final Remarks
This investigation focused exclusively on simple RBAC faults, which refer to functional

testing of RBAC mechanisms. Non-functional aspects, such as scalability, and vulnerability
analysis were out of the scope of this investigation. Moreover, it is important to highlight that,
although SPY method enabled to drastically reduce test dimensions and cost, it can still experi-
ence the state explosion problem. In this sense, if we take under consideration test environments
with rigorous time and resources constraints it may become hard to execute a whole test suite.
Thus, approaches for test reduction become necessary. This scenario motivated the execution of
a second experiments to investigate test prioritization approaches for RBAC, discussed in the
next chapter. All test artifacts are available on-line2 and can be used to replicate this experiment.

2 <https://github.com/damascenodiego/rbac-bt>

https://github.com/damascenodiego/rbac-bt

57

CHAPTER

4
INVESTIGATING TEST PRIORITIZATION

ON RBAC

Researches have conducted studies on Model Based Testing (MBT) aiming at reducing
the costs and time consumption of software testing. Test case prioritization aims at finding an
ideal ordering of test cases so that maximum benefits can be obtained, even if test execution
is prematurely halted at some arbitrary point (YOO; HARMAN, 2012). Recently, an approach
that is becoming very promising on test case prioritization uses the concept of test similarity.
In test similarity, it is assumed that similar test cases tend to cover the same parts of the
SUT and have equivalent fault detection capability. Thus, no additional gain can be expected
when similar tests are executed. Cartaxo, Machado and Neto (2011) showed that test similarity
approaches can be more effective than random prioritization on MBT. Bertolino et al. (2015)
also investigated if test similarity can improve test prioritization on XACML testing domain.
A test prioritization approach named XACML similarity was proposed and compared to other
prioritization approaches, including simple similarity and random prioritization. The XACML
similarity uses a (simple) similarity degree in conjunction with other values depicting the
degree of relevance (or applicability degree) of the test cases to the XACML policies under test.
Experimental results pointed out improvements significantly superior to the simple similarity
and comparable to optimal solutions. However, there is no test similarity approach comparable to
Cartaxo, Machado and Neto (2011) and Bertolino et al. (2015) to the RBAC domain. Thus, based
on the XACML similarity, a test criteria named RBAC similarity was proposed and compared to
simple similarity and random prioritization approaches. The RBAC-BT tool was extended to
support the RBAC similarity, simple similarity and random test prioritization and the following
research question was investigated:

Can the RBAC similarity technique outperform simple similarity and random prioritization

in terms of fault detection rate?

58 Chapter 4. Investigating Test Prioritization on RBAC

This chapter is organized as follows: In Section 4.1, the simple similarity and the
proposed RBAC similarity are introduced. In Section 4.2, the proposed experiment is discussed
in details. In Section 4.3, the results obtained from the experiments are analyzed, followed by
some discussions about the outcomes in Section 4.4. The threats to validity and the final remarks
about this chapter are presented in Sections 4.5 and 4.6, respectively.

4.1 Similarity-Based Test Prioritization
In this section, the simple and RBAC similarity are introduced. The prioritization algo-

rithm that performs the test case permutation based on a similarity criterion is also presented.
The random prioritization procedure is briefly described as well.

4.1.1 Simple Dissimilarity

The simple dissimilarity (dsd) test prioritization technique uses Cartaxo, Machado and
Neto (2011) approach to prioritize test cases for FSM models. Essentially, the execution of test
cases starts from the most distinct and less redundant tests to the most similar ones. In this study,
the similarity distance proposed by Cartaxo, Machado and Neto (2011) was adapted to calculate
the dissimilarity between pairs of test cases, thus instead of counting the number of identical
transitions (nit), the number of distinct transitions (ndt) is measured.

Given two test cases ti and t j, the degree of simple dissimilarity (dsd) is calculated as
presented in Equation 4.1.

dsd(ti, t j) =
ndt(ti, t j)

avg(length(ti)+ length(t j))
(4.1)

The number of distinct transitions (ndt) between two test cases (ti, t j) is counted and then divided
by the average length of the test cases ti and t j.

Transitions are considered distinct when there is a mismatch between origin states, input
or output symbols, or destination (tail) states. The average test cases length is used to avoid small
(or large) similarity degrees due to similar short (or long) test case lengths. In Source code 3 four
test cases are presented with the transitions and states covered depicted. The dsd of each pair of
test cases is presented in Table 16.

Source code 3: Test Cases Example

1 1000 - DS(u2 ,r1)/deny -> 1000 // t0
2 1000 - AS(u2 ,r1)/grant -> 1010 - AC(u2 ,r1)/grant -> 1011 - DS(u2 ,r1)/

grant -> 1000 // t1
3 1000 - DS(u1 ,r1)/grant -> 0000 - DS(u1 ,r1)/deny -> 1000 // t2
4 1000 - AC(u1 ,r1)/grant -> 1100 - AS(u2 ,r1)/grant -> 1110 - AC(u2 ,r1)/

deny -> 1110 // t3

4.1. Similarity-Based Test Prioritization 59

Table 16 – Simple Dissimilarity of each pair of test cases

Pairs (ti, t j) ndt avg dsd(ti, t j)
(t0, t1) 4.0 2.0 2.0
(t0, t2) 3.0 1.5 2.0
(t0, t3) 4.0 2.0 2.0
(t1, t2) 5.0 2.5 2.0
(t1, t3) 6.0 3.0 2.0
(t2, t3) 5.0 2.0 2.0

Source: Elaborated by the author.

4.1.2 RBAC Similarity

The RBAC similarity (drs) is a criteria proposed to support test prioritization in the
RBAC domain. The RBAC similarity considers not just the dissimilarity between test cases, but
also how applicable is one test case for a given policy. This criteria was designed based on a
test prioritization technique proposed by Bertolino et al. (2015) for XACML systems (OASIS,
2013). XACML is an XML-based declarative notation for specifying access control policies
and evaluating access requests. Although RBAC policies can be specified using XACML, the
current version of the XACML standard does not support yet the specification of SSoD and
DSoD constraints (OASIS, 2014). Moreover, the fault detection effectiveness of testing criteria
is strongly related to its ability to represent faults (FELDERER et al., 2015). Thus, even though
XACML test criteria may be good on detecting XACML faults, they may not be necessarily
good on detecting faults related to the RBAC domain. In this sense, our RBAC similarity makes
the verification and validation process more suitable to the specificities of the RBAC model.

As presented in Section 2.2.1, an RBAC security policy can be specified as a 16-tuple
P = (U,R,Pr,UR,PR,≤A,≤I, I,Su,Du,Sr,Dr,SSoD,DSoD,Ss,Ds). The current state of a policy
P is described based on the UR and PR sets which specifies the existing relationships between
users (U), roles (R), and permissions (Pr) and the UR, PR, ≤A, ≤I , Su, Du, Sr, Dr, SSoD, DSoD,
Ss, and Ds are the mutable elements which support access control decisions. In this sense, given
a policy P and an RBAC request rq(up,r), such that rq ∈ {AS,AC,DS,DC,AP,DP}, up ∈U ∪P

and r ∈ R, the following definition is proposed:

Definition 1. A mutable element of a policy P is applicable to one RBAC request rq(up,r) if
there is a match between the user, role or permission of a request and one mutable element of P.

For example, if a policy contains a static cardinality constraint Su(u1) = 1, this constraint
supports access control decisions of any request rq(up,r) where up = u1. Therefore, Su(u1) = 1
can be said applicable to the request AS(u1,r2). This concept enables to measure how a test
case t relates to a given policy by counting the number of requests of t applicable to the mutable
elements of P. This definition can be used to describe the static coverage of a policy given one
test case, since transitions are not traversed.

60 Chapter 4. Investigating Test Prioritization on RBAC

However, since RBAC mechanisms are essentially reactive systems, one value for mea-
suring dynamic aspects of policies under test is also necessary. In order to satisfy this requirement,
a second definition was proposed:

Definition 2. A mutable element of a policy P reacts to a test case when it is applicable to one
or more of its requests and enforces access control decisions.

For example, if a policy contains a static cardinality constraint Su(u1) = 1 and there is
one role already assigned to u1, this constraint will react to any test case attempting to assign a
second role not equals to u1, and enforce the deny response. By counting the number of RBAC
elements reacting to a given test cases, it can be measured the dynamic coverage of a policy P,
since it considers the transitions traversed.

In this sense, given an RBAC policy P and a test case t, the ratio of requests of a test case
applicable to the mutable elements of P and the number of mutable elements reacting on test
case execution can be quantified. Here the concept of XACML Applicability Degree proposed
by Bertolino et al. (2015) was adapted to the RBAC domain. Therefore, RBAC Applicability
Degree (AD) is defined as an array of four values (Equation 4.2).

ADP(t) =
[

padP(t) asadP(t) acadP(t) pradP(t)

]
(4.2)

The RBAC Applicability Degree (ADP(t)) of a test t for a policy P consists of four values:

∙ Policy Applicability Degree (padP(t)): It shows the ratio of requests applicable to all
RBAC mutable element over the total of requests;

∙ Assignment Applicability Degree (asadP(t)): It shows the number of RBAC mutable
elements related to assignment faults reacting to t;

∙ Activation Applicability Degree (acadP(t)): It shows the number of RBAC mutable
elements related to activation faults reacting to t; and

∙ Permission Applicability Degree (pradP(t)): It shows the number of RBAC mutable
elements related to permission faults reacting to t.

The padP(t) measures how applicable one test case is to a given policy considering its
mutable elements. It calculates the ratio of requests matching any constraint. The asadP(t) gives
a quantitative information about how many RBAC mutable elements related to assignment faults
(UR, Su, Sr, SSoD, and Ss) are reacting to t. The acadP(t) gives a quantitative information about
how many RBAC mutable elements related to activation faults (≤A, Du, Dr, DSoD, and Ds)
are reacting to t. Finally, the pradP(t) gives a quantitative information about how many RBAC
mutable elements related to permission faults (PR, ≤I) react to a test t.

4.1. Similarity-Based Test Prioritization 61

Using the RBAC Applicability Degree of a test case, we calculate the RBAC Request

Applicability Value (RAP(t)). The RAP(t) value summarizes the applicability degree of a test case
in a single value calculated as presented in Equation 4.3.

RAP(t) = padP(t)+asadP(t)+acadP(t)+ pradP(t) (4.3)

The RAP(t) gives a single quantitative attribute which describes how much a test case t

relates to one policy P. However, since similarities are calculated for pairs of test cases, it is also
required one value for describing the similarity of two test cases, thus the RBAC Applicability

Value was defined. The RBAC Applicability Value (AppValueP(ti,t j)) sums the applicability
degree of two test cases, as presented in Equation 4.4.

AppValueP(ti,t j) = RAP(ti)+RAP(t j) (4.4)

After calculating AppValue, the priority degree of a pair of test cases, or simply the RBAC

Priority Value (PriorityValueP(ti,t j)) is calculated. In Equation 4.5, the formula to calculate the
PriorityValue is presented.

PriorityValueP(ti,t j) =

α if (padP(ti) = padP(t j) = 1)

β if (padP(ti) XOR padP(t j))

γ if (0 < padP(ti), padP(t j) < 1)

δ otherwise

(4.5)

Essentially, the RBAC Priority Value formula gives a constant value based on padP(ti)

and padP(t j) values. These constants are some α , β , γ , or δ defined by the user, such that
α > β > γ > δ . The values 3, 2, 1 and 0 were respectively used in this experiment (BERTOLINO
et al., 2015) .

Finally, the RBAC Similarity (drs(P, ti, t j) consists on the sum of all the previously cal-
culated values (Equation 4.6). The RBAC Similarity sums the simple dissimilarity, the RBAC
applicability value, and the priority value when a pair of test cases is not equal (dsd(ti, t j) ̸= 0).

drs(P, ti, t j) =

0 if dsd(ti, t j) = 0

dsd(ti, t j)+

AppValue(P,ti,t j)+

PriorityValue(P,ti,t j) otherwise

(4.6)

As an example, the RBAC similarity for the test suite presented in Source code 3 is
calculated considering the policy in Source code 1. First, the RBAC applicability degree (RA)
must be calculated for each test case. The applicability degree for each test case is presented in
Table 17. Afterwards, the simple dissimilarity (dsd), the RBAC application value (AppValue),
the priority value (PriorityValue), and the RBAC similarity (drs) are calculated for all pairs of
test cases. The values for each pair of test cases are presented in Table 18.

62 Chapter 4. Investigating Test Prioritization on RBAC

Table 17 – RBAC Applicability Degree of each test case

Test (ti) padP(ti) asadP(ti) acadP(ti) pradP(ti) RA(ti)
t0 0.77 0.0 0.0 0.0 0.77
t1 0.77 0.0 0.0 0.0 0.77
t2 0.77 1.0 0.0 0.0 1.77
t3 1.0 1.0 1.0 0.0 3.0

Source: Elaborated by the author.

Table 18 – RBAC Similarity of each pair of test cases

Pairs (ti, t j) dsd(ti, t j) AppValue(P,ti,t j) PriorityValue(P,ti,t j) drs(P, ti, t j)

(t0, t1) 2.0 1.55 1.0 4.55
(t0, t2) 2.0 2.55 1.0 5.55
(t0, t3) 2.0 3.77 2.0 7.77
(t1, t2) 2.0 2.55 1.0 5.55
(t1, t3) 2.0 3.77 2.0 7.77
(t2, t3) 2.0 4.77 2.0 8.77

Source: Elaborated by the author.

4.1.3 Test Prioritization Algorithm

After calculating the similarity between all pairs of test cases, the sorting algorithm for
test prioritization used by Cartaxo, Machado and Neto (2011) was adapted to this experiment.
Essentially, the prioritization algorithm receives a list of test cases S as input and returns another
list of test cases L prioritized according to the similarity degree of each pair of test case using a
similarity function dx. The similarity function dx can be any of the previously discussed. The test
prioritization procedure is presented in Algorithm 1.

Algorithm 1: Algorithm for Test Prioritization
Input: S = {t1, t2, . . . , tn} // List of n test cases
Output: L // List of n prioritized test cases

1 L← [] ; Scopy← clone(S)
2 Generate the similarity matrix dx[n][n−1] from S
3 foreach ta, tb ∈ S where nextdec(dx[a][b])
4 if (longest(ta, tb) ∈ Scopy)
5 L.add(longest(ta, tb)) ; Scopy.remove(longest(ta, tb)) ;
6 else (shortest(ta, tb) ∈ Scopy)
7 L.add(shortest(ta, tb)) ; Scopy.remove(shortest(ta, tb)) ;
8 end foreach
9 return L

First, an empty list L is instantiated (line 1) and a copy of the S set Scopy is created in
order to maintain an information about the test cases not included in L. After that, the similarity
matrix for all combinations of two of different test cases (line 2) from S is calculated. The

4.2. Experiment Protocol 63

similarity matrix is iterated starting from the most dissimilar pair of test cases (line 3) and then
or the longest (line 4) or the shortest (line 6) test case is added to L and removed from S. Using
the RBAC similarity on the test suite presented in Source Code 3, the similarity matrix shown in
Equation 4.7 can be obtained.

t0 t1 t2 t3
t0 4.55 5.55 7.77
t1 5.55 7.77
t2 8.77
t3

(4.7)

In this example, the first most dissimilar pair of test cases is (t2, t3) and the test case t3 is
added to L since it is the longest not included. Afterwards, the test case t0 since it is the longest
test case from the next most dissimilar pair (t0, t3). The last pair considered is (t1, t3) and t1 is the
next to be included as it is the longest non included. The test case t2 is the last remaining test case
to be included in L and it is included when the pair (t0, t2) is accessed during the iteration. At the
end, the L list will contain all the test cases prioritized according to their pairwise dissimilarity.
The Source code 4 shows the test suite from Source code 3 prioritized with the RBAC similarity
approach.

Source code 4: Test Cases Example - RBAC similarity

1 1000 - AC(u1 ,r1)/grant -> 1100 - AS(u2 ,r1)/grant -> 1110 - AC(u2 ,r1)/
deny -> 1110 // t3

2 1000 - DS(u2 ,r1)/deny -> 1000 // t0
3 1000 - AS(u2 ,r1)/grant -> 1010 - AC(u2 ,r1)/grant -> 1011 - DS(u2 ,r1)/

grant -> 1000 // t1
4 1000 - DS(u1 ,r1)/grant -> 0000 - DS(u1 ,r1)/deny -> 1000 // t2

4.1.4 Random Prioritization

The random prioritization is performed by randomly sorting a list of test cases. If test
suites are saved in text files with one test case per line, tools such as shuf 1 can perform this task.

4.2 Experiment Protocol

In the second experiment, the three test prioritization approaches previously discussed
were evaluated using the fifteen test suites generated in the previous experiment. A schematic
overview of the steps of the experiment is presented in Figure 15.

1 Linux shuf: <http://linux.die.net/man/1/shuf>

http://linux.die.net/man/1/shuf

64 Chapter 4. Investigating Test Prioritization on RBAC

Figure 15 – Comparison of Test Prioritization Approaches - Schematic overview

Source: Elaborated by the author.

Initially, the test prioritization approaches were performed on the complete test suites,
without discarding any test case (Complete test suite(p,m) = Subtest suite(p,m,resets)), and the
effectiveness of each of the test fragments was measured (Figure 15). The random prioritization
was performed 30 times (n = 30) on each complete test suite and the average effectiveness
of its fragments was calculated. However, since complete FSM-based testing methods tend to
generate significantly large test suites (MASOOD et al., 2009), a time limit of 24h for each test
prioritization was defined and any prioritization process unsatisfying this constraint would be
terminated. Test suites with number of resets greater than those terminated would be discarded as
well. In case of any termination, a second experiment was defined using subtest suites randomly
selected from the W, HSI, and SPY complete test suites. The number of resets of the subtest
suites would be equals to the number of resets of the largest complete test suites that we were
able to prioritize, thus resets = max(NRComplete test suite(p,m)

). The whole comparison of the test
prioritization approaches was performed 30 times using different random subtest suites and the
random prioritization was performed 10 times (n = 10). The cumulative effectiveness and the Av-
erage Percentage Faults Detected (APFD) were calculated for each prioritized complete/sub test
suite in order to perform test analysis. The cumulative effectiveness consists on the effectiveness
resulted from the execution of one given fragment of a complete/sub test suite. The cumulative
effectiveness was measured considering twenty one fragments containing respectively 1%, 5%,
10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%,
90%, 95%, and 100% of the total number of test cases under consideration. The APFD is a
metric commonly used in test prioritization research (BERTOLINO et al., 2015; ELBAUM;

4.3. Analysis of Results 65

MALISHEVSKY; ROTHERMEL, 2002) and is defined as follows (Equation 4.8):

APFD =
∑

n−1
i=1 Fi

n× l
+

1
2n

(4.8)

In this experiment, the n parameter was considered as the number of fragments (n = 21), l as
the number of mutants generated from each policy, and Fi as the number of faults detected by a
given test fragment i.

4.3 Analysis of Results
In this section, we discuss the results of the experiment performed to compare the RBAC

similarity, simple dissimilarity, and random prioritization using the test suites generated by the W,
HSI, and SPY methods to the policies P01, P02, P03, P04, and P05. The cumulative effectiveness
and the APFD value were calculated for each test suite generated and will be presented below.

4.3.1 Analysis of the Complete Test Suites

First, we attempted to perform the test prioritization considering all 15 complete test
suites. However, since the prioritization of the P03 + SPY spent more than 24 hours without
successful completion, all test suites with total number of resets greater than or equals to
NRSPY (P03) were discarded, and only P01 and P02 were considered in this first stage.

4.3.1.1 Cumulative Effectiveness

The cumulative effectiveness of the complete test suites generated by the W, HSI and
SPY methods to P01 is presented in Table 19 and Figure 16 and to P02 is presented in Table 20
and Figure 17.

Table 19 – Cumulative effectiveness of the P01 complete test suites

P01 + W

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.5 0.75 1 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 0.983 1 1 1 1 1 1 1 1 1

P01 + HSI

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.5 0.5 0.5 0.75 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 0.866 0.975 0.983 1 1 1 1 1 1 1

P01 + SPY

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.5 0.5 0.5 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 0.916 0.958 0.991 1 1 1 1 1 1 1
Source: Research data.

66 Chapter 4. Investigating Test Prioritization on RBAC

Table 20 – Cumulative effectiveness of the P02 complete test suites

P02 + W

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.714 0.714 1 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 1 1 1 1 1 1 1 1 1 1

P02 + HSI

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.571 0.714 0.714 0.857 0.857 0.857 0.857 1 1 1
RBAC 0.714 1 1 1 1 1 1 1 1 1

Random 0.985 1 1 1 1 1 1 1 1 1

P02 + SPY

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.714 0.714 0.857 0.857 0.857 0.857 0.857 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 0.966 1 1 1 1 1 1 1 1 1

Source: Research data.

In five of the six test scenarios the RBAC prioritization outperformed random priori-
tization and simple similarity. In P01 (01_Masood2010Example1) test scenarios, the RBAC
similarity enabled to reach 100% of effectiveness using only 10% of the total number of test
cases. In P02 (02_SeniorTraineeDoctor) scenario, respectively 5%, 15% and 10% of the W,
HSI and SPY subtest suites became sufficient to reach 100% of effectiveness. The P02 + HSI

scenario was the only scenario where the RBAC prioritization did not present the best results
and the random approach overcomed the RBAC. Moreover, random prioritization performed
better than simple similarity in all the scenarios.

4.3.1.2 Average Percentage Faults Detected

In order to evaluate the performance of the investigated test prioritization approaches,
we also computed the APFD value on test scenario. The results are shown in Table 21 and the
highest APFD values per line are highlighted in bold. The APFD values obtained consolidate
the observations from Figures 16 and 17. Indeed, the RBAC prioritization outperformed simple
similarity and random prioritization in most of the cases, and simple similarity did not improve
the cumulative effectiveness compared to random approach.

Table 21 – APFD of the complete test suites

Scenario APFDRBAC APFDSimple APFDRandom
P01 + W 0.964 0.857 0.95
P02 + W 0.969 0.874 0.965
P01 + HSI 0.952 0.726 0.917
P02 + HSI 0.921 0.778 0.959
P01 + SPY 0.916 0.785 0.907
P02 + SPY 0.962 0.826 0.957

Source: Research data.

4.3. Analysis of Results 67

Figure 16 – Cumulative effectiveness of the complete test suites for P01

(a) P01 + W (b) P01 + HSI

(c) P01 + SPY

Source: Research data.

4.3.2 Analysis of the Subtest Suites

As the prioritization of complete test suites was infeasible on P03, P04 and P05 scenarios,
in these scenarios we performed our investigation considering 30 random subtest suites containing
2528 test cases selected from the complete test suites. The number 2528 corresponds to the
highest number of resets of the complete test suites we were able to prioritize, P02 + W (See
Table 11).

68 Chapter 4. Investigating Test Prioritization on RBAC

Figure 17 – Cumulative effectiveness of the complete test suites for P02

(a) P02 + W (b) P02 + HSI

(c) P02 + SPY

Source: Research data.

4.3.2.1 Cumulative Effectiveness

The cumulative effectiveness of the subtest suites generated to the policies P03, P04, and
P05 using W, HSI and SPY methods are respectively presented in Figures 18, 19, and 20, and
Tables 22, 23, and 24.

4.3. Analysis of Results 69

In policy P03 (03_ExperiencePointsv2) scenarios, there was no significant difference
among the test prioritization approaches, as presented in Figures 18a, 18b, and 18c and Table 22.
After prioritization, around 5 to 10 % of the total number of test cases of the W, HSI and SPY
subtest suites became sufficient to reach the highest effectiveness (1.00). In this sense, there was
a subset with 125 to 250 test cases capable of detecting all the faults injected in the policy P03
that the prioritization approaches were able put among the first test cases to be performed.

Figure 18 – Cumulative effectiveness of the subtest suites for P03

(a) P03 + W (b) P03 + HSI

(c) P03 + SPY

Source: Research data.

70 Chapter 4. Investigating Test Prioritization on RBAC

Table 22 – Cumulative effectiveness of the P03 subtest suites

P03 + W

Percent 10 20 30 40 50 60 70 80 90 100
Simple 1 1 1 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 1 1 1 1 1 1 1 1 1 1

P03 + HSI

Percent 10 20 30 40 50 60 70 80 90 100
Simple 1 1 1 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 0.995 1 1 1 1 1 1 1 1 1

P03 + SPY

Percent 10 20 30 40 50 60 70 80 90 100
Simple 1 1 1 1 1 1 1 1 1 1
RBAC 1 1 1 1 1 1 1 1 1 1

Random 1 1 1 1 1 1 1 1 1 1
Source: Research data.

In policy P04 (04_users11roles2_v2) scenarios, the differences among the techniques
started to become remarkable, as shown in Figures 19a, 19b, and 19c and Table 23. Although there
were some oscillations between 25% and 50% in P04 + W and P04 + HSI scenarios, the subtest
suites prioritized using RBAC similarity presented better cumulative effectiveness, reaching the
maximum effectiveness (0.845 and 0.839, respectively) by using 65% of the W test cases and
75% of the HSI test cases. At the same time, random and simple prioritization presented quite
similar cumulative effectivenesses. In P04 + SPY scenario, the RBAC similarity significantly
reduced the effort necessary to reach the highest effectiveness. After RBAC prioritization, around
80% of the test cases became able to reach the highest effectiveness 0.846, although since 30%
there was already the guarantee of 0.840 effectiveness.

Table 23 – Cumulative effectiveness of the P04 subtest suites

P04 + W

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.748 0.772 0.805 0.818 0.827 0.836 0.841 0.841 0.844 0.845
RBAC 0.8 0.829 0.834 0.837 0.844 0.844 0.845 0.845 0.845 0.845

Random 0.764 0.801 0.819 0.831 0.837 0.840 0.842 0.843 0.845 0.845

P04 + HSI

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.726 0.746 0.771 0.791 0.813 0.826 0.830 0.836 0.838 0.839
RBAC 0.773 0.801 0.809 0.827 0.832 0.834 0.837 0.839 0.839 0.839

Random 0.738 0.766 0.787 0.802 0.812 0.820 0.828 0.833 0.836 0.839

P04 + SPY

Percent 10 20 30 40 50 60 70 80 90 100
Simple 0.75 0.782 0.815 0.826 0.836 0.839 0.842 0.844 0.844 0.846
RBAC 0.826 0.833 0.840 0.841 0.842 0.844 0.844 0.846 0.846 0.846

Random 0.770 0.806 0.823 0.833 0.838 0.842 0.843 0.845 0.845 0.846
Source: Research data.

4.3. Analysis of Results 71

Figure 19 – Cumulative effectiveness of the subtest suites for P04

(a) P04 + W (b) P04 + HSI

(c) P04 + SPY

Source: Research data.

In policy P05 (05_Masood2009P2v2) scenario, the difference among the test prioritiza-
tion approaches became more visible, as presented in Figures 20a, 20b, and 20c, and Table 24.
Again, the simple similarity remained less effective than random prioritization and the RBAC
similarity presented cumulative effectiveness higher than both approaches, specially on P04 +

SPY scenario. Respectively, 80%, 40% and 65% of the W, HSI, and SPY subtest suites prioritized
using RBAC became able to reach the highest effectiveness.

72 Chapter 4. Investigating Test Prioritization on RBAC

Figure 20 – Cumulative effectiveness of the subtest suites for P05

(a) P05 + W (b) P05 + HSI

(c) P05 + SPY

Source: Research data.

4.3.2.2 Average Percentage Faults Detected

We also used the APFD metric to evaluate the performance of the prioritization ap-
proaches on the subtest suites. As in this experiment we considered 30 subtest suites, we
calculated the APFD for the average effectiveness of the subtest suite. The APFD values com-
puted for each test scenario are shown in Table 25. The highest APFD of each scenario are
highlighted in bold.

The analysis of the APFD values for the subtest suites showed that the RBAC similarity

4.4. Discussion 73

Table 24 – Cumulative effectiveness of the P05 subtest suites

P05 + W

Percent 10 20 30 40 50 60 70 80 90
Simple 0.597 0.614 0.628 0.644 0.660 0.667 0.678 0.687 0.698
RBAC 0.585 0.632 0.632 0.632 0.632 0.708 0.708 0.708 0.708

Random 0.593 0.609 0.623 0.637 0.650 0.665 0.675 0.688 0.697

P05 + HSI

Percent 10 20 30 40 50 60 70 80 90
Simple 0.610 0.630 0.65 0.670 0.698 0.714 0.732 0.753 0.767
RBAC 0.610 0.610 0.619 0.779 0.779 0.779 0.779 0.779 0.779

Random 0.603 0.627 0.651 0.676 0.696 0.716 0.734 0.748 0.764

P05 + SPY

Percent 10 20 30 40 50 60 70 80 90
Simple 0.657 0.717 0.762 0.802 0.839 0.865 0.898 0.907 0.95
RBAC 0.874 0.967 0.975 0.980 0.982 0.982 0.987 0.987 0.987

Random 0.710 0.792 0.852 0.895 0.924 0.948 0.963 0.975 0.983
Source: Research data.

Table 25 – APFD of the subtest suites

Scenario APFDRBAC APFDSimple APFDRandom
P03 + W 0.973 0.97 0.97
P04 + W 0.646 0.641 0.638
P05 + W 0.811 0.788 0.797
P03 + HSI 0.96 0.967 0.966
P04 + HSI 0.706 0.676 0.675
P05 + HSI 0.797 0.772 0.777
P03 + SPY 0.974 0.969 0.97
P04 + SPY 0.922 0.794 0.856
P05 + SPY 0.819 0.794 0.801

Source: Research data.

performed better than simple similarity and random prioritization in most of the cases. The
simple similarity also did not reach an APFD higher than random prioritization. In policy P04
scenario, the RBAC prioritization presented the best results. The policy P04 consist on 11
users and two roles where each of these RBAC elements have constraints limiting the number
of assignments and activation, thus its mutants have faults spread around many of the FSM
transitions (self-loops). The usage of the RBAC applicability metrics enabled to improve the
identification of distinct but relevant test cases.

4.4 Discussion

Previous investigations showed that similarity-based strategies can be helpful when it is
necessary to select test cases from an exhaustive test suite automatically generated. In model-
based testing context, similarity functions have been used as test prioritization criteria and have
enabled to efficiently eliminate redundant test cases, have improved the cumulative effectiveness
and the transition coverage of labelled transition systems (CARTAXO; MACHADO; NETO,

74 Chapter 4. Investigating Test Prioritization on RBAC

2011). At the same time, in the access control testing context, similarity metrics have been
combined with applicability metrics for access control testing and empirical results have shown
that these approaches can be useful on improving the effective compared to random prioritization
and simple similarity based approaches (BERTOLINO et al., 2015). In our investigation, we
proposed a test prioritization approach which combines similarity criteria with an applicability
metric specific to the RBAC testing domain. Since RBAC faults can be exhibited across many
different transitions of FSM(P) (MASOOD; GHAFOOR; MATHUR, 2010b), we expected that
the joint usage of the RBAC applicability and simple dissimilarity degrees as test prioritization
criteria could improve the effectiveness of test cases better than the isolated application of simple
similarity. Our results pointed out to this same direction and the proposed RBAC similarity
performed better than simple similarity and random prioritization in most of the cases considering
APFD and cumulative effectiveness. In some of the test scenarios, 10% of the total number of
test cases of the W, HSI and SPY complete and random sub test suites became as much effective
as the whole test suite only by using our RBAC similarity criteria.

4.5 Threats to Validity

The threats to validity (WOHLIN et al., 2014) identified to this investigation are discussed
in this section.

Conclusion Validity: Threats to this validity relate with the ability draw correct conclu-
sions about the relation between the treatment (e.g. test prioritization methods and policies under
test) and the outcomes (e.g. test effectiveness and APFD). Fifteen complete test suites with
different characteristics were prioritized using three different techniques, random prioritization,
RBAC similarity and simple similarity. Due to time and resource constraints, only six of the
fifteen test suites were completely prioritized. The nine other test suites were used to generate
random test suites containing a subset of the total number of test cases. Although, some of
the subsets did not reach 100% effectiveness we were still able to compare the prioritization
techniques.

Internal Validity: Threats to internal validity are related with influences that can affect
independent variables with respect to causality. They threat conclusions about a possible causal
relationship between treatment and outcome, such as the effectiveness and APFD of the FSM-
based testing methods. The complete test suites were prioritized using the random prioritization
30 times and the random subsets were generated 30 times and randomly prioritized 10 times in
order to avoid results obtained by chance.

External Validity: It concerns with the generalization of the outcomes to other scenarios
(e.g. policies or methods). To mitigate this threat, the evaluation of the prioritization approaches
was performed based on fifteen test suites, thus the confidence that the investigated approaches
will behave similarly on other environments can be improved.

4.6. Final Remarks 75

Construct Validity: Construct validity concerns with generalizing outcomes to the concept
or theory behind the experiment. Fault detection was measured using mutation analysis (e.g.
simple RBAC faults) which is a common assessment approach on software testing investigations
(JIA; HARMAN, 2011).

4.6 Final Remarks
The RBAC similarity was designed based on the XACML similarity and the test similarity

to the LTS domain, proposed by Bertolino et al. (2015) and Cartaxo, Machado and Neto (2011).
The approach was experimentally evaluated and the obtained results pointed out that RBAC
similarity can, in most of the cases, improve the APFD and enabled to reach the maximum
effectiveness with less than 50% of the test suites. Prioritizing SPY test suites with RBAC
similarity resulted on better APFD values than applying the technique on HSI and W test suites.
All test artifacts are available on-line2 and can be used to replicate this experiment. In the next
chapter, we discuss the conclusions obtained from the investigations performed in this project.
The contributions, limitations and future work are also presented.

2 <https://github.com/damascenodiego/rbac-bt>

https://github.com/damascenodiego/rbac-bt

77

CHAPTER

5
CONCLUSIONS

Investigations on model based testing of RBAC using FSMs have shown that, although
very effective, these approaches can be very costly. Recent studies have also found that recent
testing methods can improve the cost-effectiveness of FSM-based testing processes when ran-
dom FSM models are under test. Studies on test case prioritization to the FSM-based testing
domain also pointed out that similarity testing can be more effective than random prioritization
approaches. In addition, similar conclusions have been found on investigations about similarity
testing for XACML system, and that significant improvements can be obtained if the applicability
degree of test cases to XACML policies is taken into consideration. Nevertheless, since the
existing investigations have been restricted to both random FSMs and XACML domains, their
conclusions cannot be generalized to other domains, such as RBAC testing.

In this sense, this master dissertation comes to fill this gap on model based testing and
investigated FSM-based test generation methods and test prioritization techniques for RBAC
testing. The contributions of this study are presented in section 5.1. The research limitations are
presented in section 5.2. The resulting publications and future work are shown in section 5.3.

5.1 Contributions

This section revisits the main contributions of this Master’s Dissertation.

∙ A comparison among FSM-based testing methods on RBAC: The results obtained in-
dicate that recent FSM testing methods can be more adequate even for testing RBAC
systems, and not only for testing random FSM models. The test suites obtained using
the SPY method presented less resets, lower total length, and longer test cases. The fault
detection effectiveness also persisted on 100% in all cases. In this sense, recent FSM
testing methods can replace traditional methods, such as W and HSI, without effectiveness
degradation. The proposed experimental protocol, presented in section 3.1, can also be

78 Chapter 5. Conclusions

reused to replicate this investigation with, for example, other test generation methods,
RBAC policies or even as a first step for studies on later stages of software testing, such as
test selection or prioritization.

∙ An investigation of test prioritization criteria on RBAC: The RBAC similarity criteria for
test prioritization was introduced in section 4.1. This test prioritization approach takes into
consideration the relevance of a test case to the SUT, expressed as the RBAC applicability
degree, and the dissimilarity of pairs of test cases as criteria for ordering test cases. Since
a single RBAC fault can be traced to multiple elements of an FSM, there is no need for
complete coverage of the FSM fault domain. The RBAC similarity checks the coverage
performed on the RBAC constraints and gives higher priority to the most distinct and
applicable pairs of test cases which cover more RBAC elements.

∙ The repository http://github.com/damascenodiego/rbac-bt contains all artifacts discussed
and generated in these experiments. The complete source code of the RBAC-BT tool,
all policies and test analysis data can be found in this repository. These artifacts and the
experimental protocols can be used to replicate or ratify the experiments performed in this
Master’s Dissertation.

5.2 Research Limitations

In this investigation, we exclusively used the W, HSI and SPY test generation methods. In
this sense, since the performance of test prioritization approaches depends on the characteristics
of the test cases and the SUT, our results cannot be generalized to domains where other test
generation approaches are taken under consideration. Moreover, none of the RBAC policies
found in the systematic review presented role hierarchies, thus this investigation did not cover the
hierarchical RBAC model. However, it filled a research gap of the XACML standard. The current
version of the XACML standard for specifying RBAC policies only supports role hierarchies but
not the static and dynamic SoD RBAC models. The RBAC-BT tool was designed to support only
SSoD and DSoD relationships but it did not include activation and inheritance role hierarchies.

5.3 Resulting publications and Future work

The studies published and under development from the data obtained in this Master’s
investigation and future work are presented in this section.

∙ DAMASCENO, C. D. N.; DELAMARO, M. E.; SIMÃO, A. d. S. Uma revisão sistemática
em teste de segurança baseado em modelos. In: Anais do Workshop Brasileiro de Testes
de Software Automatizados e Sistemático - CBSoft - Congresso Brasileiro de Soft-
ware: Teoria e Prática. Porto Alegre: SBC, 2014. p. 31–40.

http://github.com/damascenodiego/rbac-bt

5.3. Resulting publications and Future work 79

There are also two other papers under development:

∙ The first paper will present and discuss the results of the experiment comparing FSM-

based testing methods on RBAC, presented in Chapter 3. A first version of this paper was
submitted to the XXX Brazilian Symposium on Software Engineering (SBES) 2016.

∙ The second paper will introduce the RBAC similarity approach for test prioritization and
the experimental analysis, presented in Chapter 4.

As future work, it is planned the comparison of the test prioritization approaches using
different test generation methods, such as pairwise testing. The work used as reference for
designing the RBAC similarity used pairwise and it can be used as another baseline to compare
the test prioritization methods. The extension of the RBAC-BT tool to support role hierarchies and
further replications of the experiment involving more RBAC policies are also under consideration.
A possible extension for this work is the evaluation of the effectiveness and APFD values of the
FSM-based test generation and test prioritization approaches using different coverage criteria,
such as XACML mutation analysis or source code level mutation analysis. The usage of the
RBAC similarity concept for test case generation is another possible future work. The RBAC
applicability values could be used as test criteria to guide the deterministic generation of test cases
or even as constraints on random test generation. The test prioritization could also take advantage
of these values to reduce test efforts and support search-based software testing approaches
(MCMINN, 2004) as well.

81

BIBLIOGRAPHY

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. [S.l.]: Cambridge University
Press, 2008. ISBN 9781139468671. Cited on page 21.

ANDERSON, R. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. [S.l.]: Wiley, 2008. Cited on page 33.

ANDREWS, J. H.; BRIAND, L. C.; LABICHE, Y.; NAMIN, A. S. Using mutation analy-
sis for assessing and comparing testing coverage criteria. IEEE Transactions on Software
Engineering, v. 32, n. 8, p. 608–624, Aug 2006. ISSN 0098-5589. Cited on page 29.

ANSI. Role Based Access Control. [S.l.], 2004. ANSI/INCITS 359-2004. Cited 2 times on
pages 34 and 55.

BERTOLINO, A.; DAOUDAGH, S.; KATEB, D. E.; HENARD, C.; TRAON, Y. L.; LONETTI,
F.; MARCHETTI, E.; MOUELHI, T.; PAPADAKIS, M. Similarity testing for access control.
Information and Software Technology, v. 58, p. 355 – 372, 2015. ISSN 0950-5849. Available:
<http://www.sciencedirect.com/science/article/pii/S0950584914001578>. Cited 13 times on
pages 23, 24, 41, 42, 43, 57, 59, 60, 61, 64, 65, 74, and 75.

BROY, M.; JONSSON, B.; KATOEN, J.-P.; LEUCKER, M.; PRETSCHNER, A. Model-Based
Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer Science).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005. ISBN 3540262784. Cited on page
31.

BUGLIESI, M.; CALZAVARA, S.; FOCARDI, R.; SQUARCINA, M. Gran: Model checking
grsecurity rbac policies. In: IEEE 25th Computer Security Foundations Symposium (CSF
2012). [S.l.: s.n.], 2012. p. 126–138. ISSN 1940-1434. Cited on page 87.

CARTAXO, E. G.; MACHADO, P. D. L.; NETO, F. G. O. On the use of a similarity function for
test case selection in the context of model-based testing. Software Testing, Verification and
Reliability, John Wiley & Sons, Ltd., v. 21, n. 2, p. 75–100, 2011. ISSN 1099-1689. Available:
<http://dx.doi.org/10.1002/stvr.413>. Cited 8 times on pages 23, 24, 41, 57, 58, 62, 74, and 75.

CHOW, T. S. Testing software design modeled by finite-state machines. IEEE Transactions on
Software Engineering, IEEE Press, Piscataway, NJ, USA, v. 4, n. 3, p. 178–187, May 1978.
ISSN 0098-5589. Cited 5 times on pages 23, 30, 31, 32, and 36.

COUTINHO, A. E. V. B.; CARTAXO, E. G.; MACHADO, P. D. d. L. Analysis of distance
functions for similarity-based test suite reduction in the context of model-based testing. Software
Quality Journal, Springer US, p. 1–39, 2014. ISSN 0963-9314. Available: <http://dx.doi.org/
10.1007/s11219-014-9265-z>. Cited on page 42.

DAMASCENO, C. D. N.; DELAMARO, M. E.; SIMÃO, A. d. S. Uma revisão sistemática
em teste de segurança baseado em modelos. In: Anais do Workshop Brasileiro de Testes
de Software Automatizados e Sistemático - CBSoft - Congresso Brasileiro de Software:
Teoria e Prática. Porto Alegre: SBC, 2014. p. 31–40. Cited 2 times on pages 23 and 86.

http://www.sciencedirect.com/science/article/pii/S0950584914001578
http://dx.doi.org/10.1002/stvr.413
http://dx.doi.org/10.1007/s11219-014-9265-z
http://dx.doi.org/10.1007/s11219-014-9265-z

82 Bibliography

DURY, A.; BORODAY, S.; PETRENKO, A.; LOTZ, V. Formal verification of business work-
flows and role based access control systems. In: The International Conference on Emerging
Security Information, Systems, and Technologies (SecureWare 2007). [S.l.: s.n.], 2007. p.
201–210. Cited on page 87.

ELBAUM, S.; MALISHEVSKY, A. G.; ROTHERMEL, G. Prioritizing test cases for regression
testing. SIGSOFT Softw. Eng. Notes, ACM, New York, NY, USA, v. 25, n. 5, p. 102–112, Aug.
2000. ISSN 0163-5948. Available: <http://doi.acm.org/10.1145/347636.348910>. Cited on
page 40.

. Test case prioritization: A family of empirical studies. IEEE Transactions on Software
Engineering, IEEE Press, Piscataway, NJ, USA, v. 28, n. 2, p. 159–182, Feb. 2002. ISSN
0098-5589. Available: <http://dx.doi.org/10.1109/32.988497>. Cited 3 times on pages 41, 64,
and 65.

ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of fsm-
based testing methods. Information and Software Technology, v. 55, n. 6, p. 1045 – 1062,
2013. ISSN 0950-5849. Cited 8 times on pages 23, 24, 33, 45, 46, 48, 52, and 54.

FABBRI, S. C. P. F.; DELAMARO, M. E.; MALDONADO, J. C.; MASIERO, P. C. Mutation
analysis testing for finite state machines. In: Software Reliability Engineering, 1994. Pro-
ceedings., 5th International Symposium on. [S.l.: s.n.], 1994. p. 220–229. Cited on page
30.

FADHEL, A. B.; BIANCULLI, D.; BRIAND, L. A comprehensive modeling framework for
role-based access control policies. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA,
v. 107, n. C, p. 110–126, Sep. 2015. ISSN 0164-1212. Available: <http://dx.doi.org/10.1016/j.jss.
2015.05.015>. Cited on page 34.

FELDERER, M.; ZECH, P.; BREU, R.; BÜCHLER, M.; PRETSCHNER, A. Model-based
security testing: a taxonomy and systematic classification. Software Testing, Verification and
Reliability, p. n/a–n/a, 2015. ISSN 1099-1689. Available: <http://dx.doi.org/10.1002/stvr.1580>.
Cited 2 times on pages 23 and 59.

FERRAIOLO, D. F.; KUHN, R. D.; CHANDRAMOULI, R. Role-Based Access Control,
Second Edition. Norwood, MA, USA: Artech House, Inc., 2007. ISBN 1596931132. Cited on
page 21.

GEEPALLA, E.; BORDBAR, B.; OKANO, K. Verification of spatio-temporal role based access
control using timed automata. In: IEEE 3rd International Conference on Networked Embed-
ded Systems for Every Application (NESEA 2012). [S.l.: s.n.], 2012. p. 1–6. Cited on page
87.

GILL, A. Introduction to the Theory of Finite State Machines. New York: McGraw-Hill,
1962. Cited on page 27.

IEEE. Ieee standard glossary of software engineering terminology. IEEE Std 610.12-1990, p.
1–84, Dec 1990. Cited on page 21.

JANG-JACCARD, J.; NEPAL, S. A survey of emerging threats in cybersecurity. Journal of
Computer and System Sciences, v. 80, n. 5, p. 973 – 993, 2014. ISSN 0022-0000. Special Issue
on Dependable and Secure Computing The 9th IEEE International Conference on Dependable,
Autonomic and Secure Computing. Cited 2 times on pages 21 and 33.

http://doi.acm.org/10.1145/347636.348910
http://dx.doi.org/10.1109/32.988497
http://dx.doi.org/10.1016/j.jss.2015.05.015
http://dx.doi.org/10.1016/j.jss.2015.05.015
http://dx.doi.org/10.1002/stvr.1580

Bibliography 83

JIA, Y.; HARMAN, M. An analysis and survey of the development of mutation testing. Software
Engineering, IEEE Transactions on, v. 37, n. 5, p. 649–678, Sept 2011. ISSN 0098-5589.
Cited 4 times on pages 23, 30, 56, and 75.

MASOOD, A.; BHATTI, R.; GHAFOOR, A.; MATHUR, A. P. Scalable and effective test gen-
eration for role-based access control systems. IEEE Transactions on Software Engineering,
IEEE Press, Piscataway, NJ, USA, v. 35, n. 5, p. 654–668, Sep. 2009. ISSN 0098-5589. Cited
15 times on pages 23, 24, 34, 35, 36, 37, 38, 39, 45, 54, 55, 64, 86, 87, and 95.

MASOOD, A.; GHAFOOR, A.; MATHUR, A. Conformance testing of temporal role-based
access control systems. IEEE Transactions on Dependable and Secure Computing, v. 7, n. 2,
p. 144–158, April 2010. ISSN 1545-5971. Cited on page 87.

. Fault coverage of constrained random test selection for access control: A formal analysis.
Journal of Systems and Software, v. 83, n. 12, p. 2607 – 2617, 2010. ISSN 0164-1212. {TAIC}
{PART} 2009 - Testing: Academic & Industrial Conference - Practice And Research Techniques.
Cited 2 times on pages 74 and 87.

MCMINN, P. Search-based software test data generation: A survey: Research articles. Softw.
Test. Verif. Reliab., John Wiley and Sons Ltd., Chichester, UK, v. 14, n. 2, p. 105–156, Jun.
2004. ISSN 0960-0833. Available: <http://dx.doi.org/10.1002/stvr.v14:2>. Cited on page 79.

MONDAL, S.; SURAL, S. Security analysis of temporal-rbac using timed automata. In: Fourth
International Conference on Information Assurance and Security (ISIAS 2008). [S.l.: s.n.],
2008. p. 37–40. Cited on page 87.

MONDAL, S.; SURAL, S.; ATLURI, V. Towards formal security analysis of gtrbac using timed
automata. In: Proceedings of the 14th ACM Symposium on Access Control Models and
Technologies. New York, NY, USA: ACM, 2009. (SACMAT ’09), p. 33–42. Cited on page 87.

. Security analysis of gtrbac and its variants using model checking. Computers & Security,
v. 30, n. 2-3, p. 128 – 147, 2011. ISSN 0167-4048. Special Issue on Access Control Methods
and Technologies. Cited on page 87.

MOUELHI, T.; KATEB, D. E.; TRAON, Y. L. Chapter five - inroads in testing access control.
In: MEMON, A. (Ed.). Elsevier, 2015, (Advances in Computers, v. 99). p. 195 – 222. Available:
<http://www.sciencedirect.com/science/article/pii/S0065245815000327>. Cited on page 21.

OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0. [S.l.], 2013.
Available: <http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf>. Cited 3
times on pages 23, 42, and 59.

. XACML v3.0 Core and Hierarchical Role Based Access Control (RBAC) Profile Ver-
sion 1.0. [S.l.], 2014. Available: <http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.
0-rbac-v1.0-cs02.pdf>. Cited on page 59.

OURIQUES, J. a. F. S. Strategies for prioritizing test cases generated through model-based testing
approaches. In: Proceedings of the 37th International Conference on Software Engineering
- Volume 2. Piscataway, NJ, USA: IEEE Press, 2015. (ICSE ’15), p. 879–882. Available: <http:
//dl.acm.org/citation.cfm?id=2819009.2819204>. Cited on page 40.

http://dx.doi.org/10.1002/stvr.v14:2
http://www.sciencedirect.com/science/article/pii/S0065245815000327
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.0-rbac-v1.0-cs02.pdf
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.0-rbac-v1.0-cs02.pdf
http://dl.acm.org/citation.cfm?id=2819009.2819204
http://dl.acm.org/citation.cfm?id=2819009.2819204

84 Bibliography

PETRENKO, A.; BOCHMANN, G. V. Selecting test sequences for partially-specified nondeter-
ministic finite state machines. In: LUO, G. (Ed.). 7th IFIP WG 6.1 International Workshop
on Protocol Test Systems. London, UK, UK: Chapman and Hall, Ltd., 1995. (IWPTS ’94), p.
95–110. ISBN 0-412-71160-5. Available: <http://dl.acm.org/citation.cfm?id=236187.233118>.
Cited 3 times on pages 23, 31, and 32.

SAMARATI, P.; VIMERCATI, S. Access control: Policies, models, and mechanisms. In: FO-
CARDI, R.; GORRIERI, R. (Ed.). Foundations of Security Analysis and Design. [S.l.]:
Springer Berlin Heidelberg, 2001, (Lecture Notes in Computer Science, v. 2171). p. 137–196.
ISBN 978-3-540-42896-1. Cited 3 times on pages 21, 33, and 34.

SHAFIQUE, M.; LABICHE, Y. A systematic review of state-based test tools. International
Journal on Software Tools for Technology Transfer, Springer Berlin Heidelberg, v. 17, n. 1,
p. 59–76, 2013. Cited on page 86.

SIMÃO, A.; PETRENKO, A.; YEVTUSHENKO, N. Generating reduced tests for fsms with
extra states. In: NUNEZ, M.; BAKER, P.; MERAYO, M. (Ed.). Testing of Software and
Communication Systems. Springer Berlin Heidelberg, 2009, (Lecture Notes in Computer
Science, v. 5826). p. 129–145. ISBN 978-3-642-05030-5. Available: <http://dx.doi.org/10.1007/
978-3-642-05031-2_9>. Cited 5 times on pages 23, 31, 32, 33, and 51.

SONG, B.; CHEN, S. Roles-based access control modeling and testing for web applications. In:
Third World Congress on Software Engineering (WCSE 2012). [S.l.: s.n.], 2012. p. 57–62.
Cited on page 87.

UTTING, M.; PRETSCHNER, A.; LEGEARD, B. A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability, John Wiley & Sons, Ltd, v. 22, n. 5,
p. 297–312, 2012. ISSN 1099-1689. Cited on page 22.

WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLN, A.
Experimentation in Software Engineering. [S.l.]: Springer Publishing Company, Incorporated,
2014. ISBN 3642432263, 9783642432262. Cited 2 times on pages 55 and 74.

YOO, S.; HARMAN, M. Regression testing minimization, selection and prioritization: A survey.
Softw. Test. Verif. Reliab., John Wiley and Sons Ltd., Chichester, UK, v. 22, n. 2, p. 67–120,
Mar. 2012. ISSN 0960-0833. Available: <http://dx.doi.org/10.1002/stv.430>. Cited 2 times on
pages 39 and 57.

http://dl.acm.org/citation.cfm?id=236187.233118
http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://dx.doi.org/10.1002/stv.430

85

APPENDIX

A
SYSTEMATIC REVIEW OF RBAC POLICIES

In this Appendix, we present the research protocol of a systematic study to identify
scientific papers on RBAC testing (Section A.1), the results obtained (Section A.2), and the
policies extracted (Section A.3).

A.1 Research Protocol

Objective
The primary objective of this investigation was to identify experimental studies on access

control testing using transition based notations for RBAC systems.

Research Questions
The following research questions (RQ) were established for this systematic study.

RQ1: What kind of transition based notations have been used on access control testing?

RQ1.1: What are the most used test selection criteria?

RQ1.2: What kind of test generation technologies have been used?

RQ2: What policies under test have been used in these investigations?

The research question RQ1 was defined to identify what are the most used transition
based notations for specifying and testing access control systems. The RQ1.1 and RQ1.2 were
designed to give a picture of how transition based notations have been used on test generation for
access control testing. The RQ2 was defined to identify what testing artifacts (RBAC policies)
have been considered as system under test.

86 APPENDIX A. Systematic Review of RBAC Policies

Search String

Based on the research questions, the search string used in this systematic study was
designed in order to essentially cover three scopes: access control, transition based modelling
notations, and software testing. In this sense, we have adapted Shafique and Labiche (2013)
search string for investigating transition based testing tools by including terms related to access

control. Thus, the following search string was defined: (“Access Control” OR “Control Policy”

OR “Control Policies”) AND (“transition system” “statechart” OR “statecharts” OR “state

model” OR “state machine” OR “state machines” OR “automata”) AND (“Testing” OR

“Test” OR “Verification” OR “Validation”). Masood et al. (2009) and Damasceno, Delamaro
and Simão (2014) papers were used as parameter for defining this string. The search string was
applied at IEEExplore 1, ScienceDirect 2, ACM Digital Library 3, ISI Web of Science 4, and
Scopus 5 in September 25, 2015. The StArt software 6 was used as supporting tool during this
systematic study.

Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were defined:

1. Only papers investigating RBAC testing will be included;

2. Only papers using transition based notations for test generation will be included;

3. Only papers performing experimental investigations will be included;

4. Only papers written in English will be included;

5. Papers not written in English will be excluded;

6. Any kind of gray literature will be excluded;

A.2 Results Obtained

At the end of the inclusion and exclusion, ten papers were selected and are listed in Table
26. Initially, the following information were extracted from each of the papers: Title, authors,
year of publication, Source, and type of publication.

1 <http://ieeexplore.org/>
2 <http://www.sciencedirect.com/>
3 <http://dl.acm.org/>
4 <http://webofscience.com>
5 <http://www.scopus.com/>
6 <http://lapes.dc.ufscar.br/tools/start_tool>

http://ieeexplore.org/
http://www.sciencedirect.com/
http://dl.acm.org/
http://webofscience.com
http://www.scopus.com/
http://lapes.dc.ufscar.br/tools/start_tool

A.2. Results Obtained 87

Table 26 – Papers on RBAC testing

ID Citation Paper title Authors Year Source Type
A1 (DURY et al., 2007) Formal Verification of Business

Workflows and Role Based Ac-
cess Control Systems

Dury, A. and Boroday, S. and
Petrenko, A. and Lotz, V.

2007 International Conference on Emerging Se-
curity Information, Systems, and Technolo-
gies (SecureWare)

Conference

A2 (SONG; CHEN, 2012) Roles-based Access Control Mod-
eling and Testing for Web Appli-
cations

Bo Song and Shengbo Chen 2012 Third World Congress on Software Engi-
neering (WCSE)

Conference

A3 (MASOOD et al., 2009) Scalable and Effective Test Gener-
ation for Role-Based Access Con-
trol Systems

Masood, A. and Bhatti, R. and
Ghafoor, A. and Mathur, A.P.

2009 IEEE Transactions on Software Engineer-
ing

Journal

A4 (MASOOD;
GHAFOOR; MATHUR,
2010b)

Fault coverage of Constrained
Random Test Selection for access
control: A formal analysis

Masood, A.a and Ghafoor, A.b
and Mathur, A.P.c

2010 Journal of Systems and Software Journal

A5 (BUGLIESI et al.,
2012)

Gran: Model Checking Grsecurity
RBAC Policies

Bugliesi, M. and Calzavara, S.
and Focardi, R. and Squarcina,
M.

2012 IEEE 25th Computer Security Foundations
Symposium (CSF)

Symposium

A6 (MONDAL; SURAL,
2008)

Security Analysis of Temporal-
RBAC Using Timed Automata

Mondal, S. and Sural, S. 2008 Fourth International Conference on Infor-
mation Assurance and Security (ISIAS)

Conference

A7 (MONDAL; SURAL;
ATLURI, 2009)

Towards formal security analy-
sis of GTRBAC using timed au-
tomata

Mondal, S.a and Sural, S.a and
Atluri, V.b

2009 Proceedings of ACM Symposium on Ac-
cess Control Models and Technologies
(SACMAT)

Symposium

A8 (MONDAL; SURAL;
ATLURI, 2011)

Security analysis of GTRBAC
and its variants using model
checking

Mondal, S.a and Sural, S.a and
Atluri, V.b

2011 Computers & Security Journal

A9 (GEEPALLA; BORD-
BAR; OKANO, 2012)

Verification of Spatio-Temporal
Role Based Access Control using
Timed Automata

Geepalla, E. and Bordbar, B.
and Okano, K.

2012 IEEE 3rd International Conference on Net-
worked Embedded Systems for Every Ap-
plication (NESEA)

Conference

A10 (MASOOD;
GHAFOOR; MATHUR,
2010a)

Conformance Testing of Tempo-
ral Role-Based Access Control
Systems

Masood, A. and Ghafoor, A.
and Mathur, A.P.

2010 IEEE Transactions on Dependable and Se-
cure Computing

Journal

Moreover, the following information were also extracted from each paper in order to
answer the research questions: Modelling notation used, Test selection criteria, Test generation
technology, and policy under test.

All ten papers used testing methods used structural coverage as selection criteria. From
the selected papers, four used Timed Automata (TA) as modelling notation, one used Temporized
Input Output Automata (TIOA), one other used Labelled Transition System (LTS), two used
Extended Finite State Machines (EFSM), and two used Finite State Machines. The papers A3
and A4 also used specification and requirements based selection criteria. The model checking

was the most used technology, where six papers used it. Search based approaches was used
on four papers and only two used random generation. Figure 21a presents a chart showing the
quantity of studies using each of the identified approaches, Figure 21b shows the total amount of
studies using each of the selection criteria, and Figure 21c presents a chart with the proportion of
usage of each test generation technology.

Figure 21 – Notations, selection, and generation criteria used on RBAC testing

(a) Transition based notations (b) Test selection criteria (c) Test generation technology

88 APPENDIX A. Systematic Review of RBAC Policies

The information extracted from each paper are presented in Table 27 and the policies
under test are presented in the next section.

Table 27 – Papers on RBAC testing - Information Extracted

ID Notation Selection Criteria Technology Policy under test Source code
A1 EFSM Structural Model Checking Procure to Stock 12
A2 EFSM Structural Search based Experience points and Roles 5
A3 FSM Structural, Requirements, Specification Search based, Random Hospital 7, 9
A4 FSM Structural, Requirements, Specification Search based, Random 2-Role, 1-User, 2-Permission 11
A5 LTS Structural Model Checking n/a -
A6 TA Structural Model Checking Full & Part Time Employee 5
A7 TA Structural Model Checking 4-Role, 16-User, 4-Permission -
A8 TA Structural Model Checking 3-Role, 12-User, 5-Permission 15
A9 TA Structural Model Checking SECURE Banking -
A10 TIOA Structural Search based Senior & Trainee Doctor 14
FSM: Finite State Machine | EFSM: Extended FSM | LTS: Labeled Transition System
TA: Timed Automata | TIOA: Timed Input-Output Automata
n/a: Not available / - : Not extracted

A.3 Policies Extracted

The policies under test were also extracted from each of the papers and textually described.
The adapted versions of the policies are also presented below.

Source code 5: RBAC policy - ExperiencePoints

1 users (3): {u1 ,u2 ,u3}
2 roles (4): {Admin ,Bronze ,Silver ,Gold}
3 Su (2): {(u1 ,2) ,(u2 ,2)}
4 Du (0): {}
5 Sr (0): {}
6 Dr (0): {}
7 UR (3): {(u1 ,Admin) ,(u1 , Silver) ,(u3 ,Gold)}
8 SSoD (0): {}
9 DSoD (1): {({ Silver ,Bronze ,Gold },1)}

Source code 6: RBAC policy - ExperiencePointsv2

1 users (2): {u1 ,u2}
2 roles (4): {Admin ,Bronze ,Silver ,Gold}
3 Su (0): {}
4 Du (0): {}
5 Sr (1): {(Admin ,1)}
6 Dr (0): {}
7 UR (0): {}
8 SSoD (2): {({ Silver ,Bronze ,Admin ,Gold },2) ,({ Silver ,Bronze ,Gold },1)}
9 DSoD (1): {({ Silver ,Bronze ,Admin ,Gold },1)}

A.3. Policies Extracted 89

Source code 7: RBAC policy - Masood2009P1

1 users (5): {U1 ,U2 ,U3 ,U4 ,U5}
2 roles (4): {R1 ,R2 ,R3 ,R4}
3 Su (0): {}
4 Du (5): {(U1 ,2) ,(U2 ,2) ,(U3 ,2) ,(U4 ,2) ,(U5 ,1)}
5 Sr (0): {}
6 Dr (4): {(R1 ,3) ,(R2 ,1) ,(R3 ,3) ,(R4 ,2)}
7 UR (9): {(U1 ,R1) ,(U4 ,R1) ,(U2 ,R2) ,(U5 ,R2) ,(U1 ,R3) ,(U2 ,R3) ,(U4 ,R3) ,(U4 ,

R4) ,(U5 ,R4)}
8 SSoD (1): {({R1 ,R2},1)}
9 DSoD (1): {({R3 ,R2},1)}

Source code 8: RBAC policy - Masood2009P1v2

1 users (3): {U1 ,U2 ,U4}
2 roles (4): {R1 ,R2 ,R3 ,R4}
3 Su (0): {}
4 Du (3): {(U1 ,2) ,(U2 ,2) ,(U4 ,2)}
5 Sr (0): {}
6 Dr (4): {(R1 ,3) ,(R2 ,1) ,(R3 ,3) ,(R4 ,2)}
7 UR (3): {(U1 ,R1) ,(U2 ,R1) ,(U4 ,R1)}
8 SSoD (3): {({R1 ,R2},1) ,({R3 ,R4 ,R1},1) ,({R3 ,R2},1)}
9 DSoD (0): {}

Source code 9: RBAC policy - Masood2009P2

1 users (4): {U1 ,U2 ,U3 ,U4}
2 roles (6): {R1 ,R2 ,R3 ,R4 ,R5 ,R6}
3 Su (0): {}
4 Du (2): {(U1 ,2) ,(U2 ,2)}
5 Sr (0): {}
6 Dr (6): {(R1 ,1) ,(R2 ,1) ,(R3 ,1) ,(R4 ,1) ,(R5 ,1) ,(R6 ,1)}
7 UR (8): {(U1 ,R1) ,(U1 ,R3) ,(U2 ,R3) ,(U2 ,R4) ,(U1 ,R5) ,(U2 ,R5) ,(U1 ,R6) ,(U2 ,

R6)}
8 SSoD (2): {({R3 ,R1 ,R2},2) ,({R4 ,R5},1)}
9 DSoD (2): {({R1 ,R2},1) ,({R3 ,R4 ,R2},2)}

Source code 10: RBAC policy - Masood2009P2v2

1 users (2): {U1 ,U2}
2 roles (5): {R1 ,R2 ,R3 ,R4 ,R5}
3 Su (1): {(U2 ,1)}
4 Du (1): {(U1 ,2)}
5 Sr (0): {}

90 APPENDIX A. Systematic Review of RBAC Policies

6 Dr (5): {(R1 ,1) ,(R2 ,1) ,(R3 ,1) ,(R4 ,1) ,(R5 ,1)}
7 UR (4): {(U1 ,R1) ,(U1 ,R2) ,(U2 ,R2) ,(U1 ,R4)}
8 SSoD (2): {({R3 ,R1 ,R2},2) ,({R4 ,R5},1)}
9 DSoD (2): {({R1 ,R2},1) ,({R3 ,R4 ,R2},2)}

Source code 11: RBAC policy - Masood2010Example1

1 users (2): {u1 ,u2}
2 roles (1): {r1}
3 Su (2): {(u1 ,1) ,(u2 ,1)}
4 Du (2): {(u1 ,1) ,(u2 ,1)}
5 Sr (1): {(r1 ,2)}
6 Dr (1): {(r1 ,1)}
7 UR (2): {(u1 ,r1) ,(u2 ,r1)}
8 SSoD (0): {}
9 DSoD (0): {}

Source code 12: RBAC policy - ProcureToStock

1 users (4): {Alice ,Carol ,Bob , Employee }
2 roles (5): {Role1 ,Role2 ,Role3 ,Role4 ,Role5}
3 Su (0): {}
4 Du (0): {}
5 Sr (0): {}
6 Dr (0): {}
7 UR (5): {(Carol ,Role1) ,(Alice ,Role2) ,(Carol ,Role2) ,(Carol ,Role5) ,(

Employee ,Role5)}
8 SSoD (0): {}
9 DSoD (0): {}

Source code 13: RBAC policy - ProcureToStockV2

1 users (3): {Alice ,Carol ,Bob}
2 roles (5): {Role1 ,Role2 ,Role3 ,Role4 ,Role5}
3 Su (2): {(Bob ,1) ,(Carol ,1)}
4 Du (0): {}
5 Sr (1): {(Role5 ,1)}
6 Dr (0): {}
7 UR (0): {}
8 SSoD (1): {({ Role4 ,Role3 ,Role2 },1)}
9 DSoD (0): {}

Source code 14: RBAC policy - SeniorTraineeDoctor

A.3. Policies Extracted 91

1 users (2): {Bob ,Alice}
2 roles (2): { SeniorDoctor , TraineeDoctor }
3 Su (2): {(Bob ,2) ,(Alice ,1)}
4 Du (2): {(Bob ,2) ,(Alice ,1)}
5 Sr (2): {(SeniorDoctor ,1) ,(TraineeDoctor ,2)}
6 Dr (2): {(SeniorDoctor ,1) ,(TraineeDoctor ,2)}
7 UR (2): {(Bob , SeniorDoctor) ,(Alice , TraineeDoctor)}
8 SSoD (1): {({ SeniorDoctor , TraineeDoctor },1)}
9 DSoD (0): {}

Source code 15: RBAC policy - user11roles2

1 users (12): {U0 ,U1 ,U2 ,U3 ,U4 ,U5 ,U6 ,U7 ,U8 ,U9 ,U10 ,U11}
2 roles (3): {R0 ,R1 ,R2}
3 Su (2): {(U1 ,2) ,(U0 ,2)}
4 Du (0): {}
5 Sr (2): {(R0 ,9) ,(R1 ,10)}
6 Dr (3): {(R2 ,3) ,(R1 ,9) ,(R0 ,7)}
7 UR (4): {(U1 ,R1) ,(U0 ,R2) ,(U1 ,R2) ,(U2 ,R2)}
8 SSoD (0): {}
9 DSoD (0): {}

Source code 16: RBAC policy - user11roles2_v2

1 users (11): {U1 ,U2 ,U3 ,U4 ,U5 ,U6 ,U7 ,U8 ,U9 ,U10 ,U11}
2 roles (2): {R1 ,R2}
3 Su (11): {(U1 ,1) ,(U2 ,1) ,(U3 ,1) ,(U4 ,1) ,(U5 ,1) ,(U6 ,1) ,(U7 ,1) ,(U8 ,1) ,(

U9 ,1) ,(U10 ,1) ,(U11 ,1)}
4 Du (0): {}
5 Sr (2): {(R1 ,1) ,(R2 ,1)}
6 Dr (0): {}
7 UR (0): {}
8 SSoD (1): {({R1 ,R2},2)}
9 DSoD (0): {}

93

APPENDIX

B
RBAC-BT SOFTWARE

The RBAC-BT is a java software designed to support the execution of experiments on
FSM-based testing of RBAC systems. It has been developed in the context of the master degree
project of Carlos Diego Nascimento Damasceno at the Institute of Mathematical and Computer
Sciences (ICMC), University of São Paulo (USP) (2014-2016). This project investigated FSM-
based test generation methods and test prioritization on RBAC. All artifacts used in this work can
be found at <https://github.com/damascenodiego/rbac-bt>. In this document the main aspects of
the RBAC-BT v1.0 software are described. First, in section B.1, the structure of the RBAC-BT
repository is described followed by the main features and the commands for using the RBAC-BT
tool, in section B.2.

B.1 RBAC-BT Repository

The RBAC-BT (v1.0) repository is organized in five main directories (Table 28). The
rbac-bt/ directory contains an eclipse project with the source code of the RBAC-BT software.
All policies used as SUT are available in the policies_example/ directory. The fragmentTestSuite/

directory contains a java software designed to fragment test suites for analysing test prioritization
approaches. The experiments/msc_dissertation/ directory contains the data of experiments
performed in this master dissertation. The doc/ directory contains the documentation of the
RBAC-BT project.

Table 28 – Organization of the RBAC-BT repository

Repository name Description
rbac-bt/ Contains the source code of the RBAC-BT software.
doc/ Contains the documentation of the RBAC-BT project
policies_example/ Contains the seven original RBAC policies and the five adapted versions.
fragmentTestSuite/ Contains a software designed to generate test suite fragments
experiments/msc_dissertation/ Contains the data obtained with the experiments performed in this work

https://github.com/damascenodiego/rbac-bt
https://github.com/damascenodiego/rbac-bt/releases/tag/V1.0
https://github.com/damascenodiego/rbac-bt/tree/master/rbac-bt/
https://github.com/damascenodiego/rbac-bt/tree/master/doc/
https://github.com/damascenodiego/rbac-bt/tree/master/policies_example/
https://github.com/damascenodiego/rbac-bt/tree/master/fragmentTestSuite/
https://github.com/damascenodiego/rbac-bt/tree/master/experiments/msc_dissertation/

94 APPENDIX B. RBAC-BT Software

B.2 RBAC-BT Main Features

The RBAC-BT software has been implemented to support the four steps of software
testing: test generation, test selection, test prioritization and test assessment. Figure 22 shows
the use case diagram of all features supported by the RBAC-BT. The RBAC-BT tool supports:
Generation of FSM from RBAC policies; Generation of mutants from RBAC policies; Test
prioritization; Execution of conformance testing; and Evaluation of test characteristics. The
RBAC-BT software also supports state cover method, transition cover method, transition tour
method, CRTS method, and random test selection but these features will not be discussed as they
were not used in the experiments.

Figure 22 – RBAC-BT use case diagram

Generate FSM from RBAC policy

Given an RBAC policy P, the RBAC-BT tool is able to generate an FSM(P) describing
the access control decisions which an RBAC mechanism should enforce based on P. The
conversion of RBAC policies to FSM models consists on a Breadth First Search (BFS) algorithm
seeking for all the reachable states that the mutable elements of P grant. To generate an FSM(P)

using the RBAC-BT tool run the following command:

1 $ j a v a − j a r rbac−b t . j a r < o p t i o n s > −r 2 f < r b a c _ f i l e n a m e >

In < options > the user can set the format to save the generated the FSMs. By default
the -fsm parameter is considered. It saves the FSMs in XML format. The -kk parameter enables
to save the FSM using the kiss file format. In < rbac_ f ilename > the user will set the path to
the RBAC policy described using the XML format. After run the command given above, the
FSM will be generated and saved with the same filename but different extension. The extension
will depend on the < options > parameter.

B.2. RBAC-BT Main Features 95

Generate mutants from RBAC policy

The RBAC-BT tool also supports mutation analysis of RBAC policies. The tool uses
the fault model proposed by Masood et al. (2009) to generate mutants of RBAC policies. The
following mutation operators are supported: (i) Replacement of users and/or roles from UR

relationships; (ii) Replacement of users from SSoD and DSoD sets; (iii) Increment of static and

dynamic cardinality constraints of users and roles; and (iv) Decrement of static and dynamic

cardinality constraints of users and roles.

To generate the mutants of an RBAC policy run the following command:

1 $ j a v a − j a r rbac−b t . j a r −rmut < r b a c _ f i l e n a m e >

After run the given command, a set of folders containing the mutants generated from
each mutation operator will be created.

Run Test Prioritization

The RBAC-BT tool supports three different test prioritization algorithms (Simple Dis-
similarity, RBAC Similarity, and Random Prioritization). To execute test prioritization using the
RBAC-BT tool run the following command:

1 $ j a v a − j a r rbac−b t . j a r −p r t z < t > −r b a c <rbac > −mode < p r t z >

In < t > the user defines the test suite to be prioritized given an RBAC policy <

rbac >. The -mode parameter is optional and by default it uses Simple Dissimilarity. Other
prioritization techniques can be used setting the following values in < prtz >: Simple similarity-
Based Prioritization (cartax), RBAC similarity-Based Prioritization (damasc), and Random
Prioritization (random).

Run Conformance Testing

The RBAC-BT tool is able to perform conformance testing of an RBAC policy P against
a set of RBAC mutants P′ given a test suite. In conformance testing, the RBAC policy P and all
the P′ mutants are compared based on the outputs obtained given a test suite. If any divergence
between P and P′ outputs is detected, the P′ mutant is removed from the pool of alive mutants.
To run conformance testing execute the following command:

1 $ j a v a − j a r rbac−b t . j a r −c t < rbac > −m u t a n t s <mut> − t e s t <t >

With this command the RBAC-BT tool loads an RBAC policy (< rbac >), a set of RBAC
mutants listed in a text file (< mut >), and a test suite (< t >). The program display the results
using the standard output and prints the name of the policy tested followed by the effectiveness
percentual and the list of alive mutants.

96 APPENDIX B. RBAC-BT Software

The text file listing the mutants (< mut >) must have the path to each RBAC mutant
policy file one per line. The test suite (< t >) must be a text file where each line have a sequences
of three numbers. Each sequence of three numbers refers to an input of the input domain of the
RBAC policy (< rbac >). For example, 000 refers to the first input, 001 to the second, and so on.

Evaluate Test Characteristics

The RBAC-BT tool can summarize the characteristics of test suites, such as number of
resets, test suite length, and test case length, given an RBAC policy.

All this information is print using standard output. To display test characteristics run the
following command:

1 $ j a v a − j a r rbac−b t . j a r − t e s t C h a r a c t −r b a c <rbac > − t e s t <t >

The RBAC policy < rbac > is loaded with the test suite < t > and all the information listed
before are printed using the standard output.

	Title page
	Title page
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of source codes
	List of Tables
	Contents
	Introduction
	Context
	Problem Statement and Motivation
	Research Objectives
	Summary of the Obtained Results
	Organization of the Dissertation

	Background
	Finite State Machine Based Testing
	Mutation Analysis for FSM
	FSM-Based Testing Methods
	W method
	HSI method
	SPY method

	Role Based Access Control
	FSM Based Testing of RBAC Systems
	Modelling RBAC policy as FSM(P)
	Test Generation Methods for FSM(P)

	Test Case Prioritization
	Similarity based test prioritization

	Final Remarks

	Comparing FSM-Based Testing Methods on RBAC
	Experiment Protocol
	Analysis of Results
	Access Control Policies Under Test
	FSM and RBAC Mutants Generation
	Test Suite Generation
	Test Suite Length
	Number of Resets
	Average Test Case Length
	Test Effectiveness

	Discussion
	Threats to Validity
	Final Remarks

	Investigating Test Prioritization on RBAC
	Similarity-Based Test Prioritization
	Simple Dissimilarity
	RBAC Similarity
	Test Prioritization Algorithm
	Random Prioritization

	Experiment Protocol
	Analysis of Results
	Analysis of the Complete Test Suites
	Cumulative Effectiveness
	Average Percentage Faults Detected

	Analysis of the Subtest Suites
	Cumulative Effectiveness
	Average Percentage Faults Detected

	Discussion
	Threats to Validity
	Final Remarks

	Conclusions
	Contributions
	Research Limitations
	Resulting publications and Future work

	Bibliography
	Systematic Review of RBAC Policies
	Research Protocol
	Results Obtained
	Policies Extracted

	RBAC-BT Software
	RBAC-BT Repository
	RBAC-BT Main Features

