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RESUMO

DAMASCENO, C. D. N. Aprendizado de modelos de máquinas de estados finitos de sis-
temas em evolução: Da evolução ao longo do tempo para variabilidade em espaço. 2020.
128 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2020.

Manutenção e evolução são principios básicos do ciclo de vida de software. Apesar disso, artefa-
tos de modelagem frequentemente tendem a ser negligenciados. Consequentemente, modelos
podem ficar desatualizados e dificultar a adoção de algumas técnicas tais como verificação e teste
baseado em modelos. Estudos recentes têm mostrado que técnicas de aprendizado de modelos de
máquinas de estados finitos têm se tornado bastante populares no teste e verificação de software.
Apesar disso, algoritmos para aprendizado de modelos ainda sofrem com problemas de escalabili-
dade assim como com a evolução ao longo do tempo que pode requerer o re-aprendizado do zero.
Adicionalmente, há uma lacuna de pesquisas sobre estratégias de aprendizado de modelos para
linhas de produto de software, i.e., sistemas onde variantes de software co-existem e, consequen-
temente, incorporam variabilidade no espaço. Esta Tese de Doutorado avança no estado da arte
da engenharia de software baseada em modelos apresentando contribuições teóricas e práticas
sobre aprendizado de modelos para sistemas que incorporam evolução ao longo do tempo e
variabilidade no espaço. As três principais contribuições desta Tese de Doutorado são: (i) um
algoritmo adaptativo de aprendizado de modelos que explora versões de software pré-existentes
on-the-fly para descartar conhecimento redundante e descontinuado representados em termos
de sequências de entradas que não levem à descoberta de estados. Usando máquinas de estados
reais do projeto OpenSSL, mostra-se que o algoritmo proposto consegue ser mais eficiente que o
estado da arte e menos sensível à evolução de software. (ii) Preenche-se a lacuna de pesquisas em
algoritmos de aprendizado de modelos para linhas de produto com o algoritmo FFSMDiff , uma
técnica automatizada para identificar comportamentos similares e anotar estados e transições de
máquinas de estados finitos com restrições de características (FFSM, sigla do inglês). Usando
105 modelos derivados de seis linhas de produto acadêmicas, mostra-se que o algoritmo proposto
consegue combinar famílias de máquinas de estados em FFSMs significativamente sucintas,
especialmente quando há um alto reúso entre os produtos analisados. (iii) Um conjunto de
experiências que incorporam amostragem de produtos no FFSMDiff . Os resultados indicam que
modelos de FFSM construídos usando amostragem podem ser tão precisos quanto aqueles feitos
usando aprendizado exaustivo e, consequentemente, cobrem o comportamento de uma linha de
produto.

Palavras-chave: Aprendizado de autômatos, Evolução de software, Sistemas reativos, Varibili-
dade de software.





ABSTRACT

DAMASCENO, C. D. N. Learning finite state machine models of evolving systems: From
evolution over time to variability in space. 2020. 128 p. Tese (Doutorado em Ciências –
Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2020.

Maintenance and evolution have been accepted as integral principles in the software development
life-cycle. They are essential for any system that operates in or addresses problems or activities
of the real world if it is to remain useful and profitable. Nevertheless, as time passes and
modifications occur, modeling artifacts are often neglected due to the lack of proper maintenance.
Hence, it may render outdated models and hinder the application of model-based reasoning
techniques, such as model-based testing and model checking. To address these issues, recent
academic and industrial studies have shown that finite state machine (FSM) model learning
techniques are becoming increasingly popular in software verification and testing. Despite these
advances, model learning algorithms are still hampered by scalability issues, as well as the
constant changes over time that may require learning from scratch. Furthermore, there is a
lack of investigations about learning strategies for software product lines (SPL), i.e., systems
where variants shall co-exist to satisfying the needs of distinct market segments and, hence,
incorporate variability in space. In this PhD Thesis, we improve upon the state-of-the-art of
model-based software engineering by introducing theoretical and experimental contributions to
address model learning in the setting of evolving systems that incorporate modifications over

time and variability in space. Our main contributions are three-fold: (i) We have introduced the
partial-Dynamic L*M, an adaptive algorithm that explores models from pre-existing versions on-

the-fly to discard redundant and deprecated knowledge in terms of input sequences that may not
lead to state discovery. Using realistic models of the OpenSSL toolkit, we have shown that our
algorithm has been more efficient than state-of-the-art techniques and less sensitive to software
evolution. (ii) We have filled the gap of model learning algorithms for variability-intensive
systems by introducing the FFSMDiff algorithm. It is an automated technique to identify similar
behavior shared among product-specific FSMs, annotate states, and transitions with feature
constraints, and integrate them into succinct featured finite state machines (FFSM). Using 105
FSMs derived from six SPLs of academic benchmarks, we have shown that our algorithm can
effectively merge families of state machines into succinct FFSMs, especially if there is high
feature reuse among products. (iii) We have extended our expertise upon the FFSMDiff algorithm
and reported our experiences on learning FFSMs through product sampling. Our results have
indicated that FFSMs learned by sampling can be as precise as those learned from exhaustive
analysis and hence, collectively cover the behavior of an SPL.

Keywords: Automata learning, Software evolution, Reactive systems, Software Variability.
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CHAPTER

1
INTRODUCTION

In early 1968, the North Atlantic Treaty Organization (NATO) established a study group
to shed further light on many problems concerning software manufacturing (NATO, 1968). At
this meeting, the phrase “software engineering” was coined as a provocative term to the need
for software manufacturing to be based on theoretical foundations and practical principles that
were traditional in other established branches of engineering. Among these principles, software
maintenance and evolution have been accepted as fundamental principles of software life-cycle.

According to the ISO/IEC 14764, software maintenance is defined as the modification
of a software product after delivery to correct faults, to improve non-functional attributes, or
to adapt the product to a modified environment (IEEE, 2006). Software evolution has been
addressed as a complementary idea that programs must be modified because they operate in the
real world or address problems or activities from it (LEHMAN, 1979). Hence, changes in the
real world shall affect software that will also require adaptations (GODFREY; GERMAN, 2014).

As software evolution takes place, many circumstances to compromise software quality
and reliability may emerge (DEUTSCH, 1981). To mitigate these risks, modeling notations
(BOOCH; RUMBAUGH; JACOBSON, 2005) have been used to explicitly describe static and
dynamic aspects of software systems and support software analysis (IEEE, 2010).

According to Binder (1999), software analysis is necessarily a model-based activity,
whether implicit in engineers’ minds, informally sketched on papers, or formally denoted as
explicit models (MARINESCU et al., 2015). In software analysis, explicit models are created
to scrutinize parts of the software (e.g., functions, components, or objects) and determine how
they behave and relate to each other (IEEE, 2010). The unified modeling language (UML) has
been the de facto tool to visualize, specify, construct, document, and test systems as well as for
modeling business and similar processes (BOOCH; RUMBAUGH; JACOBSON, 2005).

Software models are key assets for the development of safety-critical systems where mal-
functioning can result in death, injury, or damage to the environment (GURBUZ; TEKINERDO-
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GAN, 2018). They support the analysis of requirements consistency (UTTING; PRETSCHNER;
LEGEARD, 2012), improve program comprehension (SAID; QUANTE; KOSCHKE, 2019),
reduce the costs for testing (DIAS-NETO; TRAVASSOS, 2010), increase fault detection rate
(HEMMATI; ARCURI; BRIAND, 2013) and pave the way for automated software testing
techniques (UTTING; PRETSCHNER; LEGEARD, 2012).

Software testing is a dynamic analysis technique that aims at verifying the behavior of a
system under test (SUT) against its expected behavior using a finite set of test cases composed
of inputs and expected outputs (IEEE, 2012). Traditionally, software testing is ad hoc and
relies heavily on the engineers’ expertise (MARINESCU et al., 2015). Test engineers often use
incomplete and informal requirements to gain insights about the intended software behavior and
manually derive and execute test cases (PRETSCHNER; PHILIPPS, 2005).

By contrast, model-based testing (MBT) is a model-centric variant that relies on explicit
models encoding the intended behavior or environment of a SUT to automate test case generation,
selection, and execution (UTTING; PRETSCHNER; LEGEARD, 2012). Finite state machine-
based testing is a specialization of MBT that uses finite state machines (FSM), e.g., Mealy
machines (GILL, 1962), to derive test cases (BROY et al., 2005). These test cases are composed
of input-output pairs fed into the SUT to prove its conformance against an FSM specification
(BERG; RAFFELT, 2005).

While MBT strategies have been studied for several decades (VASILEVSKII, 1973;
CHOW, 1978) and introduced advances to the state of the art and state of the practice (MLY-
NARSKI et al., 2012; SHAFIQUE; LABICHE, 2015; MARINESCU et al., 2015), building
useful test models is still time-consuming, tedious, error-prone and dependent on engineers’
expertise (PRETSCHNER; PHILIPPS, 2005). Additionally, in the lack of proper maintenance
(WALKINSHAW, 2013), test models often become outdated. Hence, they may hinder the ap-
plication of MBT (MARIANI; PEZZÈ; ZUDDAS, 2015). To mitigate these problems, recent
academic researches and industrial case studies (IRFAN; ORIAT; GROZ, 2013; MARIANI;
PEZZÈ; ZUDDAS, 2015; VAANDRAGER, 2017; AICHERNIG et al., 2018) have shown
that black-box approaches for learning FSMs (ANGLUIN, 1987; SHAHBAZ; GROZ, 2009;
MEINKE; SINDHU, 2011a; CASSEL FALK HOWAR, 2015) are becoming increasingly popular
in software analysis and testing.

Coined by Angluin (1987), model learning has been introduced as an active procedure
to formulate a hypothesis H about the “language” (i.e., behavior) of a system under learning
(SUL). It can be thought as the inverse process of MBT where test cases are pursued to derive a
model that fits the behavior of the SUL (WEYUKER, 1983) rather than to describe its expected
and actual behaviors (BROY et al., 2005). Model learning is often described in terms of the
Minimally Adequate Teacher (MAT) framework (ANGLUIN, 1987). In the MAT framework, we
assume the input/output finite vocabulary of the SUL is known and that it produces outputs for
any input within a known and finite amount of time. The MAT framework is composed by two
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iterative phases: hypothesis construction and hypothesis validation.

In the (i) hypothesis construction, a learning algorithm poses Membership Queries (MQ)
to gain knowledge about the SUL using reset operations and input sequences. The MQs and
query outputs are organized in a data structure known as the observation table; it is composed
of sets of transfer and separating sequences for reaching and distinguishing states of the SUL,
respectively.

In the (ii) hypothesis validation, a hypothesis H about the “language” of the SUL is
formulated using the MQs posed so far and tested using Equivalence Queries (EQ). The EQs are
often concretized in terms of MBT, where it returns yes if the hypothesis is correct (i.e., all
pass); otherwise, it finds a counterexample exposing a non-conformance (i.e., failed test)
to refine the hypothesis.

1.1 Motivation

Companies such as Siemens (HAGERER et al., 2002), Springer (NEUBAUER et al.,
2012), Volvo (FENG et al., 2013), Orange (SHAHBAZ; GROZ, 2014), Philips (SCHUTS;
HOOMAN; VAANDRAGER, 2016) and Océ (SMEENK et al., 2015) have been using model
learning to address software analysis and testing problems. Model learning has been harnessed
for black-box model checking (PELED; VARDI; YANNAKAKIS, 1999), detecting feature
interactions (SHAHBAZ; PARREAUX; KLAY, 2007), analyzing network protocols (AARTS
et al., 2012; FITERĂU-BROŞTEAN; HOWAR, 2017), and characterizing software evolution
(HUNGAR; NIESE; STEFFEN, 2003; DE RUITER; POLL, 2015). Furthermore, it has been
used for testing web services (BAINCZYK et al., 2016), learning models from non-resettable
systems (GROZ et al., 2015), supporting automated test generation (RAFFELT et al., 2009) and
deriving failure models (CHAPMAN et al., 2015; KUNZE et al., 2016).

Although model learning has been studied since 1987 and significant progress has been
achieved on a wide range of problems (IRFAN; ORIAT; GROZ, 2013; MARIANI; PEZZÈ;
ZUDDAS, 2015; VAANDRAGER, 2017; AICHERNIG et al., 2018), the application of model
learning to industrial systems is still hampered by scalability issues (DUHAIBY et al., 2018).
Software changes that are exacerbated by agile methodologies, where requirements and imple-
mentations are continuously evolving (MEINKE; WALKINSHAW, 2012), may often lead to the
need for learning from scratch.

Adaptive model learning (GROCE; PELED; YANNAKAKIS, 2002) is a variant that
attempts to speed up learning by reusing the knowledge from models of alternative or previous
versions (HUISTRA; MEIJER; VAN DE POL, 2018). As a result, maintained states shall be
reached and distinguished at the cost of fewer queries than in learning from scratch. A few
studies (GROCE; PELED; YANNAKAKIS, 2002; CHAKI et al., 2008; WINDMÜLLER et al.,
2013; HUISTRA; MEIJER; VAN DE POL, 2018) have shown that pre-existing models can steer
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learning to maintained states by reusing sequences applied in the past queries and hence, reduce
the cost for learning models of evolving systems.

While adaptive techniques can boost learning, after several releases over time, old
separating sequences may lead to deprecated queries that no longer distinguish states. Similarly,
former transfer sequences may become redundant and stop accessing different states. These
are known to be significant threats for the efficient application of model learning (HUISTRA;
MEIJER; VAN DE POL, 2018). Additionally, in this PhD Thesis, we also claim that these threats
can affect projects where evolution occurs in space (CLEMENTS; NORTHROP, 2001).

Software product lines (SPL) offer effective means to support the mass production and
customization of families of software products (CLEMENTS; NORTHROP, 2001). Unlike
traditional systems that are independent and self-contained, SPLs are developed for reuse
and with reuse. Therefore, products are not created anew but derived from reusable assets
(VAN DER LINDEN; SCHMID; ROMMES, 2007). SPLs continuously deliver versions as
requirements evolve and concurrently produce variants satisfying the needs of distinct market
segments. These are respectively known as variability over time and in space and describe the
existence of artifacts with different features at different times and the same instant (POHL;
BÖCKLE; VAN DER LINDEN, 2005). Thus, the cost and time-to-market will decrease, while
the quality of individual products increases (OSTER et al., 2011).

Analyzing (e.g., validating, verifying, and testing) and maintaining SPLs on a product-
based basis is demanding due to the number of valid configurations (THÜM et al., 2014a). Hence,
substantial effort has been spent on extending notations and associated reasoning techniques
to SPLs (GRULER; LEUCKER; SCHEIDEMANN, 2008; CLASSEN et al., 2013; BEOHAR;
MOUSAVI, 2014; FRAGAL; SIMAO; MOUSAVI, 2017). These have led to family-based
techniques relying on unified representations of all valid products known as family model

(THÜM et al., 2014a) or 150% model (BEUCHE; SCHULZE; DUVIGNEAU, 2016).

Family models are FSMs annotated with propositional logic formulae to express presence

conditions for states and transitions (FRAGAL; SIMAO; MOUSAVI, 2017), i.e., the combination
of features involved in the concerned part of the model (THÜM et al., 2014a). Thus, using SAT
solvers (BERRE; PARRAIN, 2010) and feature modeling (KANG et al., 1990), family models
are amenable to model-based testing (UTTING; PRETSCHNER; LEGEARD, 2012) and model
checking (BAIER; KATOEN, 2008) techniques where redundant analysis of shared assets are
avoided or minimized. Therefore, the cost of family-based analysis becomes mainly determined
by the number and size of features and the amount of feature sharing, rather than the number of
valid products (THÜM et al., 2014a).

Despite these possibilities, the creation and maintenance of family models are challenging
tasks (OSTER, 2012) due to crosscutting features that may hurdle traceability (SCHAEFER
et al., 2012). Additionally, the lack of maintenance may render outdated family models as it
happens in the life cycle of traditional systems (WALKINSHAW, 2013).
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1.2 Problem Statement and Research Objectives

In this PhD Thesis, we address the problem of learning models from evolving systems in
the following sense:

Research Problem

Given an evolving system that has changed over time (in space) where its versioning scheme
(variability model) is known, but version-specific FSMs (family models) are unavailable or
outdated, how can we efficiently and effectively learn (family-based) finite state machines

specifying its behavior?

While there are several studies on model learning from scratch (IRFAN; ORIAT; GROZ,
2013; MARIANI; PEZZÈ; ZUDDAS, 2015; VAANDRAGER, 2017; AICHERNIG et al., 2018),
there are only a few works on adaptive learning variants (GROCE; PELED; YANNAKAKIS,
2002; CHAKI et al., 2008; WINDMÜLLER et al., 2013; HUISTRA; MEIJER; VAN DE POL,
2018). Additionally, there is a research gap intersecting model learning and software variability
analysis in space.

Thus, in this PhD Thesis, we pursued three research objectives. These are referred to
as Learning to reuse, Learning from difference, and Learning by sampling. The
research objectives and their relationships are illustrated in Figure 1.

Learning to Reuse

Learning from 
Differences

Learning by 
Sampling

Figure 1 – Research Objectives of this PhD Thesis

Source: Elaborated by the author.

In the next sections, each of these research objectives and their relationships are discussed,
how they have been addressed, our main findings, and references to manuscripts that have been
published or submitted.
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1.2.1 Learning to reuse

As the first research objective, it has been investigated optimization strategies to
mitigate threats to the performance of adaptive learning led by deprecated and redundant

sequences. To address these issues, we have improved upon the state of the art of model learning
by proposing the partial-Dynamic L*M (∂L*M) algorithm, an adaptive technique that explores
on-the-fly observation tables to efficiently and effectively build models from systems evolving
over time.

To evaluate the ∂L*M technique, we have extended the LearnLib framework for automata
learning (RAFFELT; STEFFEN, 2006) and relied on FSMs from a large-scale analysis of several
versions of the OpenSSL toolkit (DE RUITER, 2016). We have empirically shown that the ∂L*M
technique achieves the same effectiveness of the state of the art for adaptive learning but higher
efficiency than the existing approaches in terms of MQs. Additionally, our technique has been less
sensitive to evolution over time than the other techniques. These findings indicate that ∂L*M is an
efficient and effective adaptive technique.

For learning models from systems that evolve over time...

We have introduced the ∂L*M algorithm to mitigate the costs for learning Mealy machines
from evolving systems. We have performed an experiment to compare our technique
against three state-of-the-art adaptive algorithms (CHAKI et al., 2008; HUISTRA; MEIJER;
VAN DE POL, 2018). We have used as subjects a set of models of realistic size and structure
from the OpenSSL project (DE RUITER, 2016). Our results have indicated that the ∂L*M
algorithm is effective in learning models and more efficient in terms of MQs.

The partial-Dynamic L*M algorithm has been published as a regular paper at the 15th
International Conference on integrated Formal Methods held in Bergen, Norway (DAMASCENO;
MOUSAVI; SIMAO, 2019b). For the sake of reproducibility and repeatability, I open-sourced
our code artifacts, FSMs, and test scripts in a lab package available on GitHub at <https:
//github.com/damascenodiego/DynamicLstarM/releases/tag/iFM2019/>.

1.2.2 Learning from difference

As it has been previously discussed, software modifications may also emerge in terms
of variability in space, i.e., if multiple versions shall co-exist to satisfy the needs of distinct
market segments (CLEMENTS; NORTHROP, 2001; POHL; BÖCKLE; VAN DER LINDEN,
2005). The modeling and maintenance of variability-intensive systems have been reported to be
challenging (CLASSEN et al., 2013) as there is often an exponential number of valid products
(PERROUIN et al., 2010) and crosscutting features (SCHAEFER et al., 2012; OSTER, 2012;
BENDUHN, 2014).

https://github.com/damascenodiego/DynamicLstarM/releases/tag/iFM2019/
https://github.com/damascenodiego/DynamicLstarM/releases/tag/iFM2019/
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Motivated by these issues, we have extended the investigations on model learning towards
SPLs and pursued a second research objective to formulate approaches for leveraging the
concept of model learning to behavioral variability analysis. To date, this is the first work
investigating the problem that we refer to as family model learning.

By incorporating feature model analysis (BENAVIDES; SEGURA; RUIZ-CORTÉS,
2010) into model learning algorithms (WALKINSHAW; BOGDANOV, 2013), we have intro-
duced FFSMDiff , a fully automated technique to learn featured finite state machines (FFSM),
a family-based formalism that unifies Mealy Machines of SPLs into a single representation
(FRAGAL; SIMAO; MOUSAVI, 2017). Our technique incorporates variability to identify similar
behavior shared among products FSMs (WALKINSHAW; BOGDANOV, 2013), annotate states
and transitions with feature constraints, and integrate them into succinct FFSMs.

To evaluate our technique, we have employed the FeatureIDE framework for feature-
oriented development (THÜM et al., 2014b) and the Apache Commons Mathematics Library
(Apache, 2016) into the LearnLib framework for automata learning (LearnLib, 2017) to find
similar behavior shared between product-specific FSMs. As subject systems, we have relied on
abstract representations of SPLs from academic benchmarks (FRAGAL; SIMAO; MOUSAVI,
2017; CLASSEN, 2010) that included non-trivial aspects, such as the possibility of infinite
behavior and the existence of states with similar or identical behavior in different products
(WALKINSHAW; BOGDANOV, 2013). Our empirical results have indicated that the FFSMDiff

algorithm can effectively merge families of product FSMs into succinct family models, especially
if there is high feature reuse among products.

Our study paves the way to the adoption of family-based analysis techniques even when
family models are unavailable or outdated. It can support domain engineering (CLEMENTS;
NORTHROP, 2001; POHL; BÖCKLE; VAN DER LINDEN, 2005), SPL re-engineering (FENSKE;
THüM; SAAKE, 2013), SPL evolution (MARQUES et al., 2019), and traceability analysis
(VALE et al., 2017). The ideas surrounding our algorithm can be extended to other family-based
notations (BENDUHN et al., 2015; CLASSEN et al., 2013; BEOHAR; MOUSAVI, 2014).

For learning family models from product-lines...

We have introduced the FFSMDiff algorithm, an automated technique for family model
learning. Our technique can identify similar behavior shared among product FSMs, inte-
grate them into a succinct family model, and annotate its states and transitions with feature
constraints. We have presented an experiment evaluating our technique and showing its
effectiveness for learning family models. Our results have indicated that our algorithm is
effective and that the amount of feature reuse is a factor that affects the performance of
family model learning.
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A full paper about this contribution has been published at the 23rd International Systems
and Software Product Line Conference held in Paris, France, in September 2019 (DAMASCENO;
MOUSAVI; SIMAO, 2019a). For the sake of reproducibility, I have included a lab package with
a variety of artifacts (e.g., source code, test scripts, FFSMs, FSMs, feature models) on GitHub at
<https://github.com/damascenodiego/learningFFSM/releases/tag/splc19>.

An extended abstract presenting an overview and indicating future work for this PhD
Thesis has been presented and published in the PhD-iFM’19, a PhD Symposium at International
Conference on integrated Formal Methods 2019, held in Bergen, Norway, on December 3, 2019
(DAMASCENO, 2019).

1.2.3 Learning by sampling

To close this PhD Thesis, we have pursued the third and last research objective to in-
vestigate optimization techniques towards efficient family model learning. Thus, we have
extended our expertise upon the FFSMDiff algorithm and reported experiences on incorporat-
ing product sampling (VARSHOSAZ et al., 2018) into the process of family model learning
(DAMASCENO; MOUSAVI; SIMAO, 2019a).

Using 105 product FSMs derived from six SPLs (SAMIH et al., 2014; CLASSEN, 2010;
FRAGAL; SIMAO; MOUSAVI, 2017), we have shown that family models learned from a subset
of sampled product configurations (PERROUIN et al., 2010) can be as precise as those learned
using exhaustive analysis. These results pave the way towards optimized family model learning
procedures for product-lines by means of product sampling.

For optimizing family model learning for product-lines...

We have extended our analysis upon the FFSMDiff algorithm by incorporating product
sampling. We have designed an experiment using 105 products from six SPLs of academic
benchmarks to analyze the effectiveness of our algorithm on learning succinct FFSMs. We
have shown that the amount of feature reuse is a factor that affects the size of learned family
models. Our results have shown that family models learned by sampling can be as precise
as those learned by exhaustive analysis.

These results have been submitted as a journal paper for a Special Issue1 on "Configurable
Systems" in the Empirical Software Engineering Journal (DAMASCENO; MOUSAVI; SIMAO,
2020). The full set of plots, tabulated results, coding artifacts, and models are available on
GitHub at the link <https://github.com/damascenodiego/learningFFSM/releases/tag/EMSE>.

1 <https://www.springer.com/journal/10664/updates/17198898>

https://github.com/damascenodiego/learningFFSM/releases/tag/splc19
https://github.com/damascenodiego/learningFFSM/releases/tag/EMSE
https://www.springer.com/journal/10664/updates/17198898
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1.3 Structure of this PhD Thesis
The remainder of this PhD Thesis is organized as follows:

Chapter 2: First, it introduces the basic definitions of software testing and model-based testing. Second,
it presents model learning, reviews the literature on its adaptive learning variants, and
discusses techniques to quantify the precision of learned models using state-based model
comparison. Third, it covers the concept of software product lines and approaches to
support the analysis of SPLs, such as product sampling and family-based modeling using
Feature Finite state Machine.

Chapter 3: First, it discusses the problem of learning models from evolving systems from the per-
spective of evolution over time. Second, it introduces the ∂L*M algorithm, an approach to
mitigate problems of reusing redundant and deprecated sequences that may undermine
the performance of adaptive learning. Third, using realistic FSMs from the OpenSSL
toolkit, it presents an empirical analysis upon our technique to show that, by exploring
observation tables on-the-fly, it is less sensitive to software evolution than the state of the
art for adaptive learning and achieves the same effectiveness but higher efficiency than
the existing approaches for adaptive learning in terms of MQs. This chapter discusses the
contribution towards the first research objective of this PhD Thesis.

Chapter 4: First, it proposes the FFSMDiff algorithm, a technique for learning family models from
product-specific FSMs of product-lines. Second, using academic benchmarks of abstract
representations of SPLs given in terms of FSMs, it shows that the FFSMDiff algorithm
can automatically learn succinct family models out of product-specific FSMs, and include
new product-specific behavior into an existing family model. Third, it extends our analysis
upon the FFSMDiff algorithm for learning family models using product sampling. Finally,
it also discusses the impact of incorporating different product sampling criteria into the
process of family model learning. This chapter discusses the contribution towards the
second and third research objective of this PhD Thesis.

Chapter 5: We close this PhD Thesis by reviewing its contributions in terms of publications that have
been published or submitted. It enumerates a few related work, research assumptions and
limitations to this study. Finally, we indicate a non-exhaustive list of possibilities of future
work that this PhD Thesis shall open the opportunity to be conducted.
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CHAPTER

2
BACKGROUND

Many circumstances exist for injecting human mistakes into activities involved in the
software development life cycle (DEUTSCH, 1981). Mistakes can happen at the beginning of the
requirements elicitation as well as later in the design and development stages, leading to defects
and failures (IEEE, 2010). To mitigate these issues, there is a range of software engineering
principles to build quality collectively named verification and validation (IEEE, 2012).

Verification and validation (V&V) concern whether products conform to their require-
ments and satisfy their intended use and user needs (IEEE, 2010). V&V activities are often
classified as static or dynamic analysis. In static analysis, a system or component is evaluated
without execution, (e.g., based on its form, structure, content, or documentation) to detect prob-
lems or violations of development standards (MYERS; SANDLER; BADGETT, 2012); and, in
dynamic analysis, the evaluation is based on its behavior during program or model execution
with a set of inputs and observing the resulting behavior (AMMANN; OFFUTT, 2008). Software
testing is the primary technique for V&V used in industry (BROY et al., 2005).

According to Binder (1999), the activity of software analysis and testing are supposed to
be a model-based activity. In these activities, test models can be implicit in test engineers’ minds,
informally sketched on papers, and dependent on the engineers’ expertise (MARINESCU et al.,
2015). Therefore, an efficient and effective testing often tends to be time-consuming (BERG;
RAFFELT, 2005). Testing component-based and service-oriented systems can also include other
challenges as they usually lack explicit models (ISBERNER; HOWAR; STEFFEN, 2014a). To
tackle these issues, recent studies have been incorporating model learning into software analysis
and testing (MARIANI; PEZZÈ; ZUDDAS, 2015).

Coined by Angluin (1987), model learning has been introduced as an active procedure
to formulate a hypothesis H about the “language” (i.e., behavior) of a system under learning
(SUL). Model learning can be thought of as the inverse process of testing where inputs are
pursued to derive a test model that fits the behavior of the SUL (WEYUKER, 1983), rather than
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to describe aspects of the expected and actual behaviors (BROY et al., 2005).

Although model learning has been harnessed for a range of problems, its application in
industry is still hampered by scalability issues (DUHAIBY et al., 2018); agile methodologies
(MEINKE; WALKINSHAW, 2012), where requirements and implementations are continuously
evolving; and software diversity (SCHAEFER et al., 2012), where commonalities and variability
are managed to develop reusable assets and derive products (CLEMENTS; NORTHROP, 2001).
Thus, these may need learning from scratch (HUISTRA; MEIJER; VAN DE POL, 2018).

in this chapter, we present the theoretical background supporting the research objectives
of this PhD thesis as follows: in Section 2.1, we introduce the basic definitions of software
testing and place a special emphasis on FSM-based testing; in Section 2.2, we introduce model
learning, review the literature on its adaptive variants, and introduce an approach for quantifying
the precision of learning algorithms by means of model comparison; in Section 2.3, we cover
concepts of software product lines (SPL), behavioral modeling of SPLs using the Feature Finite-
state Machine (FFSM) notation, and techniques for SPL testing, such as configuration similarity
and product sampling.

2.1 Software testing

Software testing is a dynamic analysis technique in which a system under test (SUT)
is executed under specified conditions, results are observed, and an evaluation of some aspects
of the SUT is made (IEEE, 2010). A test case specifies the test inputs, execution conditions,
expected outputs, and execution order (IEEE, 2010). A set of test cases is called test suite. The
evaluation of obtained outputs is performed using a test oracle (JORGENSEN, 2013).

A test oracle is an instrument that determines whether a given obtained output is an
acceptable behavior of the SUT or not (BARR et al., 2015). Test oracles are classified into four
categories: (i) specified oracles, (ii) derived oracles, (iii) implicit oracles, and (iv) human oracles.
Table 1 describes each of these categories of test oracles with examples.

Exhaustive testing executes the SUT using all possible test inputs from its input domain.
Since input domains are often infinite or significantly large, exhaustive testing is not feasible in
practice. Moreover, determining whether a SUT is correct or not is, in general, impossible due
to theoretical limits. Thus, testing criteria are used to systematize the task of software testing.
Figure 2 depicts the relationship between the concepts of software testing.

Testing techniques and testing criteria define what specific elements of a software

artifact that a test case has to exercise (AMMANN; OFFUTT, 2008). Testing criteria define what
specific elements of a test artifact (i.e., test requirements) a test case has to exercise (AMMANN;
OFFUTT, 2008) to constitute a "thorough" test suite (GOODENOUGH; GERHART, 1975).
Testing criteria can support test generation from different kinds of artifacts (e.g., source code,



2.1. Software testing 35

Table 1 – Categories of test oracles

Oracle Relies on Examples
Specified Formal specifications to judge whether the

SUT has an acceptable behavior
Mealy machines (BROY et al., 2005), contracts
(BURDY et al., 2005), assertions (MASSOL;
HUSTED, 2003)

Derived Information derived from documentations,
system executions, properties, alternative
versions of SUTs

Pseudo-oracles (WEYUKER, 1982), regression
testing (ELBAUM et al., 2004), model learning
(ISBERNER; HOWAR; STEFFEN, 2015), and
invariant detection (ERNST et al., 2007)

Implicit General knowledge (e.g., buffer overflows,
segfaults, exceptions)

Fuzzing (BEKRAR et al., 2011), model learning
(DE RUITER; POLL, 2015)

Human Reducing human involvement in evaluating
test outputs

Test suite minimization (YOO; HARMAN,
2012), and meta-heuristics (AFSHAN; MCMINN;
STEVENSON, 2013)

Source: Adapted from Barr et al. (2015).

Figure 2 – Relationships between software testing concepts

Source: Adapted from Machado, Vincenzi and Maldonado (2010).

models) (MACHADO; VINCENZI; MALDONADO, 2010).

For the variant of software testing that relies on explicit models as test artifact, we give
the name of model-based testing (MBT) (UTTING; PRETSCHNER; LEGEARD, 2012). In
this PhD Thesis, we focus on the variant of MBT that relies on complete deterministic Mealy
machines (GILL, 1962), hereafter called finite-state machines (FSM).

2.1.1 Finite-state machines-based testing

Finite-state machine-based testing is a specialization of MBT that relies on FSMs to
specify test models (BROY et al., 2005). FSMs have been successfully used to denote the
behavior of hardware (DUHAIBY et al., 2018), software (HUISTRA; MEIJER; VAN DE POL,
2018), and communication protocols at abstract levels (DE RUITER, 2016).

Definition 2.1.1. (Complete Deterministic FSM) An FSM M = ⟨S,s0, I,O,δ ,λ ⟩ is a 6-tuple
where S is the finite set of states, s0 ∈ S is the initial state, I is the set of inputs, O is the set of
outputs, δ : S× I → S is the transition function, and λ : S× I → O is the output function.

Initially, an FSM is in the initial state s0. Given a current state si ∈ S, when a defined
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input x ∈ I, such that (si,x) ∈ S× I, is applied, the FSM responds by moving to state s j = δ (si,x)

and producing output y = λ (si,x). The concatenation of two inputs α and ω is denoted by α ·ω .
An input sequence α = x1 ·x2 · ... ·xn ∈ I* is defined in state s ∈ S if there are states s1,s2, ...,sn+1

such that s = s1 and δ (si,xi) = si+1, for all 1 ≤ i ≤ n. Transition and output functions are lifted
to input sequences, as usual. For the empty input sequence ε , δ (s,ε) = s and λ (s,ε) = ε . For
a non-empty input sequence α · x defined in state s, we have δ (s,α · x) = δ (δ (s,α),x) and
λ (s,α · x) = λ (s,α)λ (δ (s,α),x).

An input sequence α is a prefix of β , denoted by α 6 β , when β = α ·ω , for some
sequence ω . An input sequence α is a proper prefix of β , denoted by α < β , when β = α ·ω , for
ω ̸= ε . The prefixes of a set T are denoted by pre f (T ) = {α|∃β ∈ T,α ≤ β}. If T = pre f (T ),
it is prefix-closed.

An input sequence α ∈ I* is a transfer sequence from s to s′, if δ (s,α) = s′. An input
sequence γ is a separating sequence for si,s j ∈ S if λ (si,γ) ̸= λ (s j,γ). Two states si,s j ∈ S are
equivalent if, for all α ∈ I*, λ (si,α) = λ (s j,α), otherwise they are distinguishable. An FSM
is deterministic if, for each state si and input x, there is at most one possible state s j = δ (si,x)

and output y = λ (si,x). Notice that our definition only allows for complete deterministic FSMs,
which are the focus of this PhD Thesis. If all states of an FSM are pairwise distinguishable, then
the FSM is minimal.

Example 2.1.1. (The windscreen wiper FSM) Figure 3 depicts a windscreen wiper system
supporting intervaled and fast wiping, if any raindrop is sensed, such that S = {off , itv,rain},
I = {rain,swItv} and O = {0,1}. Transition and output functions are represented by directed
edges labeled with input/output symbols.

itv

rain / 0

rain

rain / 1 swItv / 1 
swItv / 1 

off

 swItv / 0 

rain/0

Figure 3 – The windscreen wiper FSM

An input sequence α ∈ ΩM starting with a reset r is a test case of M. Given two test
cases α,β ∈ T , if α is a proper prefix of β , the execution of β implies the execution of α; thus,
α can be discarded from T without affecting test results. A test suite of M consists of a finite
set T of test cases, such that there are no two sequences α,β ∈ T where α < β . The number
of symbols of a sequence α is represented by |α| and describes the length of the test sequence
α . Given a test case α , the execution cost is calculated as |α|+1 (i.e., the length of α plus one
reset operation). The number of resets of T (i.e., number of test cases) is represented by |T |.
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In FSM-based testing, we aim at evaluating whether the transitions between the states
of a SUT are correct and hence prove the equivalence between two FSMs (BROY et al., 2005).
Two FSMs MS = ⟨S,s0, I,O,δ ,λ ⟩ and MI = ⟨S′,s′0, I,O′,δ ′,λ ′⟩ are equivalent (MS ≡ MI) and
vice-versa if for each states of MS there is an equivalent state in MI . To achieve this, there are
special sequences that underpin most of the techniques in the literature and provide partial
information about the SUT.

Definition 2.1.2. (State cover) A set Q of input sequences is state cover for M if ε ∈ Q and, for
all si ∈ S, there is a sequence α ∈ Q to reach state si, i.e., δ (s0,α) = si.

Definition 2.1.3. (Transition cover) A set P of input sequences is transition cover for M if
ε ∈ P and, for all (s,x) ∈ S× I, there are sequences α,αx ∈ P to reach state s and cover the
transition labeled with the input x that departs from s, i.e., δ (s0,α) = s.

Definition 2.1.4. (Characterization set) A set W of input sequences is characterization set for
M if for all si,s j ∈ S, i ̸= j, there is an α ∈W such that λ (si,α) ̸= λ (s j,α).

2.1.1.1 W method

The W method (CHOW, 1978; VASILEVSKII, 1973) is one of the most classic test
generation methods for FSM. In the W method, the test case generation proceeds by concatenating
the characterization set W to the leaves of the tree representation of the transition cover set P.
Thus, the characterization set W identifies all states and transitions in the FSM covered by the
transition cover set P, i.e., r ·P ·W .

2.1.1.2 Wp method

The W-partial (Wp) method (FUJIWARA et al., 1991) is a test case generation method,
where the term partial applies as it uses a subset of the W set. The Wp method is a well-known
improvement of the traditional W method (CHOW, 1978; VASILEVSKII, 1973) that attempts to
reduce the number of test cases by following a two stages process:

1. States verification: to verify the set of states Q in the SUT using a set of test cases
C1 = r ·Q ·W .

2. Uncovered transitions verification: to assess the subset of remaining transitions R=P∖Q

using a set of test cases C2 =
⋃

α∈R r ·α ·Wi, where Wi ⊂ W distinguishes si = δ (s0,α)

from all the other states of S.

As many FSM-based test case generation methods, the W (CHOW, 1978; VASILEVSKII,
1973) and the Wp (FUJIWARA et al., 1991) methods have full fault detection capability. Ad-
ditionally, they can detect an estimated number of extra states m using a traversal set

⋃m
i=0(I

i),
where Ii contains all sequences from I* with length i. However, finding an upper bound m is
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often non-trivial as it requires knowledge about the SUT. Hence, underestimation can lead to
incorrect models or overestimation can lead to scalability issues.

MBT has been studied for several decades (VASILEVSKII, 1973; CHOW, 1978) and
introduced advances in the state-of-the-art and state-of-the-practice of software testing and
analysis (MLYNARSKI et al., 2012; SHAFIQUE; LABICHE, 2015; MARINESCU et al., 2015).
However, building useful test models is still time-consuming, tedious, error-prone, and dependent
on engineers’ expertise (BERG; RAFFELT, 2005; PRETSCHNER; PHILIPPS, 2005). Addition-
ally, component-based and service-oriented systems often lack complete specification models
(ISBERNER; HOWAR; STEFFEN, 2014a), and in the lack of proper maintenance (WALKIN-
SHAW, 2013), models may become outdated. To mitigate these problems, recent studies (IRFAN;
ORIAT; GROZ, 2013; MARIANI; PEZZÈ; ZUDDAS, 2015; VAANDRAGER, 2017; AICH-
ERNIG et al., 2018) have shown that black-box approaches for learning FSMs (ANGLUIN,
1987; SHAHBAZ; GROZ, 2009; MEINKE; SINDHU, 2011a; CASSEL FALK HOWAR, 2015)
are becoming increasingly popular in software analysis and testing.

2.2 Model learning

Coined by Angluin (1987), active model learning is an active procedure that aims at
formulating a hypothesis about the behavior of an SUL by pursuing inputs and observing outputs
(IRFAN; ORIAT; GROZ, 2013). It differs from passive learning, where models are synthesized
from a finite set of traces without interacting with the SUL (TRETMANS, 2011).

According to Weyuker (1983), MBT and active model learning can be thought of as
being inverse processes. The MBT process begins with a SUT and specification (i.e., the test
model) and looks for test cases to characterize conformance relations (BROY et al., 2005).
Model learning starts with a set of queries (i.e., test cases), and derives a behavioral specification
(i.e., test model) that fits the behavior of a given SUL (IRFAN; ORIAT; GROZ, 2013). The
model learning procedure is often described in terms of the Minimally Adequate Teacher (MAT)
framework (ANGLUIN, 1987). In Figure 4, we illustrate the MAT framework.

In the MAT framework, a learning algorithm iteratively poses test inputs as queries
to observe outputs and formulate a hypothesis (i.e., test model) about the behavior of the
SUL. This procedure is supported by a teacher (i.e., oracle) able to answer if such a hypothesis
is correct or not, and return counterexamples that expose differences. Therefore, the MAT
framework is organized as an iterative process of two phases: hypothesis construction, where
a model is built by posing Membership Queries (MQ); and hypothesis validation, where the
hypothesis is subjected to Equivalence Queries (EQ).

An Equivalence Query (EQ) checks whether a hypothesized model denotes the
real behavior of an SUL. The result of an EQ is yes, if the hypothesis is correct (i.e., all pass),
otherwise a counterexample points non-conformances (i.e., failed test). Often, teachers
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Teacher

MBT

Learning Algorithm

All pass / Failed test Yes / Counterexample

Perform tests Equivalence Query (EQ)

Outputs Query Output

Reset + inputs Membership Query (MQ)

Observation Table

                     E
S

S · I

SUL

R
eset + inputs

O
utputs Formulates

intvoff rain

Figure 4 – The Minimally Adequate Teacher (MAT) framework

Source: Adapted from Vaandrager (2017).

use MBT to compute inputs and outputs and reset the SUL to its initial state.

A Membership Query (MQ) consists of inputs and reset performed to gain knowl-
edge (i.e., query output). If a teacher replies with a counterexample, other MQs are asked
to improve the hypothesized model until the hypothesis becomes correct. The outputs are
organized in an observation table that is incrementally refined to build a hypothesis.

Since Angluin (1987) seminal paper, the MAT framework has been extended to other
formalisms, such as nondeterministic finite automata (BOLLIG et al., 2009), mealy machines
(NIESE, 2003; LI; GROZ; SHAHBAZ, 2006; SHAHBAZ; GROZ, 2009), register automata
(AARTS et al., 2012; CASSEL FALK HOWAR, 2015; AARTS et al., 2015; CASSEL et al.,
2016), and input-output transition systems (VOLPATO; TRETMANS, 2015). In this PhD Thesis,
we discuss model learning in terms of the L*

M algorithm (SHAHBAZ; GROZ, 2009).

2.2.1 The L*M algorithm

Groce, Peled and Yannakakis (2002) have proposed to model the input and output
alphabet of SULs as a collection of concatenated symbols (i.e., Σ = I∪O). Thus, model learning
algorithms designed for deterministic finite automata (ANGLUIN, 1987) could be applied to
SULs representable as Mealy machines. However, this increment at the size of the input domain
would directly affect the time complexity for learning (GROCE; PELED; YANNAKAKIS, 2002).
Shahbaz and Groz (2009) have extended the work by Angluin (1987) to optimize the process of
learning to Mealy machines by leveraging the concepts of observation table and membership
queries to this formalism and, hence, introducing the L*

M algorithm.

The L*M algorithm (SHAHBAZ; GROZ, 2009) builds hypotheses about an SUL in terms
of FSMs by iteratively posing MQ until a correct model is formulated (SHAHBAZ; GROZ, 2009).
In the L*M algorithm, MQs are also referred to as observation queries (OQ) as mealy machines
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express SULs in terms of input/output pairs, rather than (un)accepted inputs. An observation
table (OT) is a triple OT = (SM,EM,TM), where SM ⊆ I* is a prefix-closed set of inputs labeling
the rows of OT , EM ⊆ I+ is a suffix-closed set of inputs labeling the columns of OT , and
TM : (SM ∪SM · I)×EM → O+ maps inputs to outputs.

Definition 2.2.1. (Observation Table) An observation table OT = (SM,EM,TM) is a triple, where
SM ⊆ I* is a prefix-closed set of transfer sequences (i.e., prefixes); EM ⊆ I+ is a set of separating
sequences (i.e., suffixes); and TM is a table where rows are labeled by elements from SM ∪(SM · I),
columns are labeled by elements from EM, such that for all pre ∈ SM ∪ (SM · I) and su f ∈ EM,
TM(pre,su f ) = λ (δ (q0, pre),su f ) where q0 is the initial state.

Traditionally, the L*M algorithm (SHAHBAZ; GROZ, 2009) starts with the sets of prefixes
SM = {ε} and suffixes EM = I so that it can reach the initial state and observe the outputs
of the outgoing transitions, respectively. Two rows pre1, pre2 ∈ SM ∪ (SM · I) are equivalent,
denoted by pre1 ∼= pre2, when for all su f ∈ EM it holds that TM(pre1,su f ) = TM(pre2,su f ). The
equivalence class of a row r is denoted by [r]. Thus, the algorithm poses MQs until the properties
of closedness and consistency hold:

Definition 2.2.2. (Closedness property) An observation table OT is closed if, for all pre1 ∈
(SM · I), there is a pre2 ∈ SM where pre1 ∼= pre2.

Definition 2.2.3. (Consistency property) An observation table OT is consistent if for all pre1, pre2 ∈
SM, such that pre1 ∼= pre2, it holds that pre1 ·α ∼= pre2 ·α , for all α ∈ I.

If an observation table is not closed, it searches for a row s1 ∈ SM · I, such that s1 ̸∼= s2

for all s2 ∈ SM, moves it to SM, and completes the observation table by asking MQs for the new
rows. If the observation table is not consistent, it searches for s1,s2 ∈ SM,e ∈ EM, i ∈ I, such
that s1 ∼= s2 but TM(s1 · i,e) ̸= TM(s2 · i,e), adds i · e to EM, and completes the observation table
by asking MQs for the new column. Given a closed and consistent observation table, the L*M
formulates a hypothesis H = (QM,q0M , I,O,δM,λM) where QM = {[pre]|pre ∈ SM}, q0M = [ε]

and, for all pre ∈ SM, i ∈ I, δM([pre], i) = [pre · i] and λM([pre], i) = TM(pre, i).

After formulating H , the L*M algorithm works under the assumption that an EQ returns
either a counterexample (CE) exposing the non-conformance, or yes, if H is equivalent to
the SUL. When a CE is found, a CE processing method adds prefixes and/or suffixes to the OT
and refines H . These steps are repeated until EQ = yes. For black-box systems, EQs are often
approximated using random walks (ANGLUIN, 1987; HOWAR; STEFFEN; MERTEN, 2010),
conformance testing (CHOW, 1978; VASILEVSKII, 1973; FUJIWARA et al., 1991), or both
(ISBERNER; HOWAR; STEFFEN, 2015; MEINKE; SINDHU, 2011b).

Example 2.2.1. (OT from the windscreen wiper FSM) In Table 2, we show an observation
table built using L*M, a CE = swItv ·rain ·rain ·rain and the processing method by Rivest
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and Schapire (1993) that uses binary search to find the shortest suffix from CE that refines a
hypothesis. The cost to build this OT is 24 MQs and 1 EQ.

Table 2 – OT extracted from the windscreen wiper FSM

rain swItv rain · rain

Sr

ε 0 1 0 ·0
swItv 1 0 1 ·0
swItv · rain 0 1 0 ·1

Sr · Ir

rain 0 1 0 ·0
swItv · swItv 0 1 0 ·0
swItv · rain · rain 1 0 1 ·0
swItv · rain · swItv 0 1 0 ·1

The worst-case complexity of the algorithm for the number of MQs is O(|I|2mn+ |I|mn2)

parameterized on the size of the input domain I, the length m of the longest CE and the number
of states n of the minimal FSM describing the SUL.

In Algorithm 1, we present the L*
M

algorithm (SHAHBAZ; GROZ, 2009). As input,
the algorithm takes the SUL and a fixed input alphabet I. As output, the algorithm returns a
hypothesis H modeling the reactive behavior of the SUL.

Source: Adapted from Shahbaz and Groz (2009).

Motivated by the impact of CEs on the complexity of the L*M algorithm, there is a range
of processing methods available in the literature (IRFAN; ORIAT; GROZ, 2013). Additionally,
caching filters have been incorporated as a component for pre-processing and avoiding redundant
queries (MARGARIA; RAFFELT; STEFFEN, 2005). Finally, there is also a branch of research
that investigates variants for learning that rely on previously inferred models to reduce the costs
of model learning for evolving systems, namely adaptive model learning (GROCE; PELED;
YANNAKAKIS, 2002; CHAKI et al., 2008; WINDMÜLLER et al., 2013; HUISTRA; MEIJER;
VAN DE POL, 2018).

2.2.2 Adaptive model learning

Adaptive model learning is a variant of learning which attempts to speed up learning
by reusing pre-existing models, e.g., from previous/alternative versions (GROCE; PELED;
YANNAKAKIS, 2002). In adaptive learning, transfer and/or separating sequences built from
pre-existing models are used to initialize learning algorithms with sets of prefixes and suffixes
and attempt to perform better than starting from the traditional sets of sequences for reaching
the initial state (i.e., SM = {ε}) and collecting outputs from outgoing transitions (i.e., EM = I).
Therefore, a reduction in the number of MQs and EQs may be obtained.
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Algorithm 1 – The L*
M

Algorithm

Input: The SUL and the input alphabet I
Output: Hypothesized mealy machine H

1: procedure MEALYLEARNING( SUL, I ): Hypothesized model H
2: Initialize the rows SM = {ε}, columns EM = I and SM · I = {ε · i}, for all i ∈ I
3: Complete OT = (SM,EM,TM) by asking MQs, for all s ∈ (SM ∪SM · I) and e ∈ EM
4: repeat
5: while (SM,EM,TM) is not closed or not consistent do
6: if (SM,EM,TM) is not consistent then
7: Find s1,s2 ∈ SM, e ∈ EM, i ∈ I where s1 ∼= s2, but TM(s1 · i,e) ̸= TM(s2 · i,e)
8: EM = EM ∪{i · e} . add i · e to EM
9: Complete (SM,EM,TM) by asking MQ for the new column i · e

10: end if
11: if (SM,EM,TM) is not closed then
12: Find s1 ∈ SM · I, such that s1 ̸∼= s2, for all s2 ∈ SM
13: SM · I = SM · I ∖ s1; SM = SM ∪{s1} . move s1 to SM
14: SM · I = SM · I ∪{s1 · i}, for all i ∈ I . add s1 · i to SM · I, for all i ∈ I
15: Complete (SM,EM,TM) by asking MQ for the newly added rows
16: end if
17: end while
18: Build a hypothesized model H from OT = (SM,EM,TM)
19: Ask an EQ to the MAT
20: if MAT replies counterexample to EQ then
21: Process counterexample . e.g., add all the prefixes to SM
22: Complete (SM,EM,TM) by asking MQ for the missing elements
23: end if
24: until MAT replies Yes to an EQ
25: return Hypothesis H built from OT = (SM,EM,TM)
26: end procedure

To the best of our knowledge, there are only four studies that address problems related
to adaptive model learning (GROCE; PELED; YANNAKAKIS, 2002; WINDMÜLLER et al.,
2013; HUISTRA; MEIJER; VAN DE POL, 2018; CHAKI et al., 2008). Each of these studies is
discussed in the next sections.

Adaptive model checking

Groce, Peled and Yannakakis (2002) have been one of the earliest to address the task
of reusing sequences from inaccurate (but not completely irrelevant) models to reduce the
time spent on model learning and model checking. To investigate this issue, the authors have
performed an experimental study to evaluate the benefits of reusing either transfer sequences or
separating sequences, or both sequences, against the costs for standard learning from scratch.
Their results have indicated that adaptive learning can be efficient, especially when there are
minor modifications, or when these changes may have a very limited effect on the correctness of
properties checked.
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Active continuous quality control

Windmüller et al. (2013) have presented an adaptive learning technique for periodically
inferring automata models from complex applications that evolve over time. Their findings have
shown that the reuse of separating sequences taken from models of previous versions shall enable
model learning algorithms to find states maintained in newer versions.

Adaptive learning for regression testing

Huistra, Meijer and van de Pol (2018) have shown that the performance of adaptive
model learning algorithms is influenced by three factors: (i) the complexity of the SUL, (ii) the
amount of difference between the model of the reused version and the SUL, and (iii) the quality
of the suffixes. Thus, if a set of reused separating sequences has low quality (i.e., lacks the
capacity of distinguishing states in a further release), the authors indicate that adaptive learning
may tend to pose irrelevant queries, and hence perform an extra effort to reach novel states. To
mitigate these issues, the authors have suggested that calculating subsets of good separating
sequences should reduce the number of deprecated sequences.

Verification of evolving software via component substitutability analysis

When software evolves, specification models may become outdated and hamper the
effective application of model checking. (MARIANI; PEZZÈ; ZUDDAS, 2015). To tackle these
issues, Chaki et al. (2008) have introduced DynamicCheck, an approach to reduce the cost for
model checking software upgrades (SERY; FEDYUKOVICH; SHARYGINA, 2015). Central
to their approach is Dynamic L*, an adaptive learning algorithm that reuses observation tables
from previous versions for inferring DFAs (ANGLUIN, 1987). As a result, upgrade checking
can succeed in a small fraction of the time to verify its reference version (CHAKI et al., 2008).

Originally, the L*M starts from S = {ε}, E = I and hence, if there is any previously learned
model from some reference version vre f , it misses opportunities for optimizing the learning
process. To this end, Dynamic L* restores the agreement of an outdated table OTo = (Sr,Er,To)

built from vre f by re-posing MQs to the updated release vupdt to build an updated observation
table OTr = (Sr,Er,Tr).

Definition 2.2.4. (Agreement) An OTr = (Sr,Er,Tr) agrees with vupdt if and only if, for all
s ∈ (Sr ∪Sr · Iu) and e ∈ Er, it holds Tr(s,e) = λu(s,e), where λu is an output function of vupdt .

After restoring the agreement, the observation table OTr may have redundant prefixes
and deprecated suffixes. To discard them, the Dynamic L* searches for a smaller SR ⊆ Sr with
the same state coverage capability but fewer prefixes, referred to as well-formed cover (CHAKI
et al., 2008).
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Definition 2.2.5. (Well-Formed cover subset) Let Sr be the set of prefixes from an observation
table OTr in agreement with vupdt ; a subset SR ⊆ Sr is a well-formed cover, if and only if (i) SR is
prefix-closed, (ii) for all s1,s2 ∈ SR, it holds that s1 ̸∼= s2, and (iii) SR is a maximal subset of Sr.

After finding SR ⊆ Sr, it uses a Column function to group prefixes into equivalence classes
given a subset of suffixes. Thus, it searches for an optimal subset of suffixes ER ⊆ Er, referred to
as the experiment cover (CHAKI et al., 2008).

Definition 2.2.6. (Column Function) Let SR be well-formed cover, an observation table OTR′ =

(SR,Er,TR′) derived from OTr, the input set Iu of vupdt , and an e ∈ Er; the column function is
Col(SR,e) : SR ×Er → {B1,B2, ...,Bn} where Bi are non-empty partitions of SR (i.e., Bi ⊆ SR),
∩n

i=1Bi = /0, ∪n
i=1Bi = SR, Col(SR,ε) = {SR} and x,y ∈ Bi if and only if T (x,e) = T (y,e).

An ER ⊆ Er is an experiment cover subset iff for all distinct e1,e2 ∈ ER, it holds that
Col(SR,e1) ̸=Col(SR,e2) and for all e′ ∈ ER there is an e ∈ Er where Col(SR,e) =Col(SR,e′).
Finally, the L*M algorithm is initialized with the subsets S = SR and E = ER, rather than the
S = {ε} and E = I indicated in the Line 2 of Algorithm 1. Therefore, the cost for upgrade model
checking is reduced to a small fraction of the cost needed to verify its reference version from
scratch (CHAKI et al., 2008).

2.2.3 Structural comparison of state-based models

According to Walkinshaw and Bogdanov (2013), structurally comparing two state ma-
chines is a difficult task that involves establishing similarity relationships between states and
transitions. To achieve this goal, the authors have introduced LTSDiff , an algorithm to compute
the precise difference between two labeled transition systems, a well-known variant of FSM.

In the LTSDiff algorithm, the similarities between two FSMs are described in terms of
states and their surrounding transitions matching input and output symbols. To indicate the
surrounding transitions, we incorporate a 7th element D in our definition of FSMs to represent
the input domain of each state. Thus, we depict our two FSMs as Mr = ⟨Sr,s0r , Ir,Or,Dr,δr,λr⟩
and Mu = ⟨Su,s0u , Iu,Ou,Du,δu,λu⟩. The algorithm first calculates the set of matching transitions
for all pairs of states a ∈ Sr and b ∈ Su using the individual number of pairs of states that can be
reached via matching transitions, as follows:

Succa,b = {(c,d, i,o) ∈ Sr ×Su × (Ir ∪ Iu)× (Or ∪Ou), such that

δr(a, i) = c, δu(b, i) = d, and

λr(a, i) = λu(b, i) = o}

Second, a global similarity score is calculated by aggregating the scores of all states
connected to the original pair as follows:
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SG
Succ(a,b) =

1
2

∑(c,d,i,o) ∈ Succa,b
(1+ k×SG

Succ(c,d))

|∑out
r (a)−∑

out
u (b)|+ |∑out

r (b)−∑
out
u (a)|+ |Succa,b|

An attenuation ratio k is used to give precedence to state pairs that are closer to the
original pair of states, and the notation ∑

out
r (a) refers to the set of labels of outgoing transitions

for state a of Mr. Therefore, the expression |∑out
r (a)−∑

out
u (b)|+ |∑out

r (b)−∑
out
u (a)| denotes

the number of outgoing transitions from both states a and b that do not match each other.

Given two FSMs Mr and Mu, the global similarity score SG
Succ(a,b) is used to build a

system of linear equations, such that each equation corresponds to the SG
Succ(a,b) for one specific

pair of states (a,b) ∈ Sr ×Su.

The global similarity is calculated both in terms of future behavior (i.e., outgoing
transitions) and past behaviors (i.e., incoming transitions). The global similarity score for
incoming transitions SG

Prev(a,b) is calculated in a similar manner.

Let the equations for the outgoing and incoming transitions be SG
Succ(a,b) and SG

Prev(a,b),
the similarity scores for each pair of states (a,b) are averaged as follows:

S(a,b) =
SG

Succ(a,b)+SG
Prev(a,b)

2

Example 2.2.2. (Illustration of a system of linear equations) In Table 3, we depict the system
of equations resulting from the comparison of the FSMs in Figures 5 and 6. State pairs are
represented by the first two letters of their respective names.

Pause GameBowling GameStart Game
Start/1

Pause/1Start/1
Exit/1 Pause/1

Exit/1 Pause/0Start / 0
Exit / 0

Figure 5 – Example of reference version for an FSM

Source: Elaborated by the author.

2.2.3.1 The LTSDiff algorithm

Given the averaged scores, the comparison of two models is performed in a similar
fashion to how we manually navigate using maps in unfamiliar landscapes (WALKINSHAW;
BOGDANOV, 2013). This process is described in Algorithm 2.
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Pause GamePong GameStart Game
Start/1Exit/1

Pause/1Start/1

Exit/1

Exit/0
Pause/0

Start/0 Pause/0

Figure 6 – Example of alternative version for an FSM

Source: Elaborated by the author.

Pair (St,St) (St,Po) (St,Pa) (Bo,St) (Bo,Po) (Bo,Pa) (Pa,St) (Pa,Po) (Pa,Pa)

(St,St) 10.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 1

(St,Po) -0.5 8.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 2

(St,Pa) -0.5 0.0 8.0 0.0 -0.5 0.0 0.0 0.0 0.0 2

(Bo,St) 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 1

(Bo,Po) 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 -0.5 2

(Bo,Pa) 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0

(Pa,St) 0.0 0.0 0.0 0.0 -0.5 0.0 7.5 0.0 0.0 2

(Pa,Po) -0.5 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 1

(Pa,Pa) -0.5 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 5.5 3
Table 3 – Ilustration of a system of linear equations

Source: Elaborated by the author.

Source: Adapted from Walkinshaw and Bogdanov (2013).

First, in Line 3, a filtering method denoted by identifyLandmarks selects the top t% most
equivalent pairs, and, if one state is matched to several others, a ratio r includes only those pairs
that are at least r times as good as any other match. If no state is selected, then, in Line 4-6, the
initial states are selected as initial landmarks.

Second, in Line 7, the algorithm proceeds from the initial landmarks using Surr(a,b) to
reach the surrounding states through the incoming and outgoing transitions matching input/output
labels. Thus, it builds a set of candidates matched state pairs NPairs.

Third, the set NPairs is iterated in the order of their similarity scores. In Line 10, once a
pair (a,b) is selected, it is included in the set of confirmed matches KPairs, in Line 11, and, in
Line 12, all elements that include either a or b are discarded from NPairs. This process iterates
until no further pairs can be added to KPairs and NPairs becomes empty. Finally, in Lines 16-18,
the KPairs set is used to calculate the sets of transitions added, removed, and maintained.
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Algorithm 2 – The LTSDiff algorithm

Input: FSM Mr, FSM Mu, k, t, r
Output: Sets of states added removed and maintained (Add,Rem,K pt)

1: procedure LTSDiff ( Mr, Mu, k, t, r): Sets of states (Add,Rem,K pt)
2: PairsToScore = computeScores(Mr,Mu,k);
3: KPairs = identi f yLandmarks(PairsToScore, t,r);
4: if KPairs == /0 and S(s0r ,s0u)> 0 then
5: KPairs = (s0r ,s0u);
6: end if
7: NPairs = ∪(a,b)∈KPairsSurr(a,b)−KPairs;
8: while NPairs ̸= /0 do
9: while NPairs ̸= /0 do

10: (a,b) = pickHighest(NPairs,PairsToScore);
11: KPairs = KPairs∪ (a,b);
12: NPairs = removeCon f licts(NPairs,(a,b));
13: end while
14: NPairs = ∪(a,b)∈KPairsSurr(a,b)−KPairs;
15: end while
16: Add={b1

a/b−−→ b2∈Du| ̸ ∃(a1
a/b−−→ a2∈Dr∧(a1,b1)∈KPairs∧(a2,b2)∈KPairs)};

17: Rem={a1
a/b−−→ a2∈Dr| ̸ ∃(b1

a/b−−→ b2∈Du∧(a1,b1)∈KPairs∧(a2,b2)∈KPairs)};
18: K pt = KPairs;
19: return return (Add,Rem,K pt);
20: end procedure

2.2.3.1.1 Model precision

Originally, the LTSDiff algorithm (WALKINSHAW; BOGDANOV, 2013) has been
proposed to identify structural differences in models reverse-engineered by learning algorithms,
such as the L* (ANGLUIN, 1987), L*M (SHAHBAZ; GROZ, 2009), or RPNI (HIGUERA, 2010;
WIECZOREK, 2017). This structural difference is categorized in terms of a confusion matrix
(SOKOLOVA; LAPALME, 2009). In this sense, the confusion matrix for calculating model
precision is composed of the following sets: the set of true-positives T P refers to the common
transitions, the set of false-positives FP refers to the added transitions, and the set of false-
negative FN refers to the removed transitions.

In Table 4, we show the confusion matrix used to compute the structural difference
between two FSMs Mr and Mu, i.e., the target and learned models, respectively.

Based on these four sets, performance metrics, such as Precision, Recall, and F-measure,
can be computed for any model learning algorithm (WALKINSHAW; BOGDANOV, 2013).
Thus, the Precision metric quantifies the proportion of transitions in Du that are also in Dr, and
the Recall metric tells the proportion of transitions in Dr that are also in Du. In Table 5, we show
the formula used to calculate the aforementioned performance metrics.



48 Chapter 2. Background

Target Mu

in Du not in Du

Reference Mr
in Dr T P = Dr∖Rem FN = Rem

not in Dr FP = Add T N = /0
Table 4 – Confusion matrix to compute model learning performance metrics

Source: Adapted from Walkinshaw and Bogdanov (2013).

Measure Formula Description

Precision |T P|
|T P∪FP| Proportion of transitions

from Mu that are in Mr

Recall |T P|
|T P∪FN| Proportion of transitions

from Mr that are in Mu

F-Measure 2×Precision×Recall
Precision+Recall Harmonic mean between Pre-

cision and Recall
Table 5 – Performance metrics for comparing FSMs

Source: Adapted from Walkinshaw and Bogdanov (2013).

2.3 Software product lines

Technology companies, such as ABB, Boeing, Philips, and Siemens, have been facing
an increasing demand for mass production and customization of hardware and software products
(POHL; BÖCKLE; VAN DER LINDEN, 2005). To cope with this, they have been investing
in establishing common platforms to build families of products. These platforms are often
produced using software development approaches, such as software product line engineering
(CLEMENTS; NORTHROP, 2001).

According to Pohl, Böckle and van der Linden (2005), the software product line engi-
neering (SPLE) framework aims at supporting the development of multiple software applications
(called products) from a common and managed set of assets in a systematic way. Unlike tradi-
tional software systems, which are tailored for a specific use, SPLs are developed for reuse and
with reuse of features (CLEMENTS; NORTHROP, 2001). Thus, products are not created anew
but derived from reusable assets (VAN DER LINDEN; SCHMID; ROMMES, 2007).

Let F be the set of features of an SPL, where a feature consists of increments to product
functionalities (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). A product p is defined by a
subset of features p ⊆ F from a feature model FM (KANG et al., 1990). A feature model FM

captures structural information and dependencies about common and variant features of an SPL
as a hierarchically arranged set of features.

Features are interconnected by four kinds of relationships: Mandatory, if a child feature
is included in all products in which its parent appears; Optional, if a child is optionally included;
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Alternative, when only one child feature can be selected; and Or, when one or more of features
can be included. Let the set of features in a feature model be F , the powerset P(F) of all feature
combinations is constrained to a subset of valid products P ⊆ P(F) that satisfy its relationships.
To illustrate these concepts, let the Arcade Game Maker SPL be our running example.

Example 2.3.1. (The Arcade Game Maker SPL) The Arcade Game Maker (AGM) SPL has three
alternative features (i.e., Brickle, Pong, and Bowling) and one optional feature (i.e., Save).
Figure 7 shows the AGM feature model. The feature model in Figure 7 has six valid product
configurations, among which three satisfy the feature constraint ¬S.

Figure 7 – The AGM feature model

Feature constraints are propositional logic formulae that interpret the elements from F in
terms of propositional variables. SAT solvers (BERRE; PARRAIN, 2010) are often used to detect
valid feature models, feature combinations, core features (i.e., features that are part of all products)
and redundancies (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). We denote by B(F) the
set of all feature constraints. The subset Λ ⊆ B(F) defines all valid product configurations of an
SPL. We interchangeably refer to products as sets of features and propositions.

The configuration ρ ∈ B(F) of a product p ∈ P is a feature constraint that expresses the
conjunction of all features included in p and the conjunction of negated features absent from
it, i.e., ρ = (

∧
f∈p f )∧ (

∧
f ̸∈p¬ f ). Given a feature constraint χ ∈ B(F), a configuration ρ ∈ Λ

satisfies χ , denoted by ρ � χ , iff the feature constraint ρ∧χ is true. Given two feature constraints
ωa and ωb from a feature model FM, and Λa,Λb ⊆ Λ satisfying ωa and ωb, respectively, we say
that ωa and ωb are equivalent under FM if Λa = Λb.

2.3.1 Analysis strategies for SPLs

The modeling and analysis (e.g., validation and verification) of SPLs are known to be
demanding and cumbersome as one has to guarantee that features work as intended regardless
of particular combinations. According to Thüm et al. (2014a), there are five categories of
specification and analysis strategies for SPLs: product-based, domain-independent, family-
wide, feature-based, and family-based. In Table 6, we summarize the main characteristics,
disadvantages, and challenges of each analysis strategy.
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Table 6 – Description of analysis strategies for SPLs

Strategy Specification characteristics Disadvantages and Challenges

Product-based One specification model for every valid
product of an SPL

Scales only for small SPLs, and involves
redundant effort

Domain-independent Specification independent but valid
across SPLs

Only describes properties common
across SPLs

Family-wide One specification model that holds for
all products of an SPL

Cannot express particular behavior inher-
ent to some specific products

Feature-based Specify the behavior of isolated features
instead of products

There is no explicit reference to other
features

Family-based Specify properties of individual features
and feature combinations

Traditional methods cannot be used as
they are, maintenance of artifacts

Source: Adapted from Thüm et al. (2014a).

The two extremes of these specification strategies, i.e., product-based and family-based
analysis, are discussed in the following sections.

2.3.1.1 Product-based analysis

In product-based strategies, each valid product of an SPL is specified and analyzed indi-
vidually using traditional analysis techniques, such as standard MBT (UTTING; PRETSCHNER;
LEGEARD, 2012) or model checking (BAIER; KATOEN, 2008). Product-based analysis strate-
gies are often classified as optimized (or sample-based) if it evaluates a subset of valid products;
or unoptimized if it analyzes all valid products in an exhaustive, i.e., brute-force, fashion.

Although theoretically possible, unoptimized strategies are often impractical due to the
exponential number of valid products within an SPL, and inefficient due to redundant compu-
tations performed over shared assets (THÜM et al., 2014a). Despite these issues, exhaustive
analysis is often used as a baseline for other strategies (VARSHOSAZ et al., 2018). In the next
sections, we present two testing criteria that can be used as product-based strategies for efficiently
and effectively analyzing product-lines.

Combinatorial Interaction Testing

As we have previously discussed, the number of possible product configurations usually
grows exponentially with the number of features. Hence, the exhaustive analysis of SPLs is often
impractical, especially for large product-lines (THÜM et al., 2014a). To address these problems,
product sampling techniques that provide subsets of valid configurations have been used to cover
the behavior of SPLs and cater for possible feature interactions (APEL et al., 2013). Therefore,
they should reveal most of the faults in all other products (PERROUIN et al., 2010).
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According to Varshosaz et al. (2018), product sampling often relies on feature models
(KANG et al., 1990) and SAT solvers (BERRE; PARRAIN, 2010) to distinguish valid from
invalid configurations (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). To support product
sampling, there are techniques using genetic algorithms (ENSAN; BAGHERI; GAŠEVIĆ, 2012;
LOPEZ-HERREJON et al., 2014) and T-wise coverage (PERROUIN et al., 2010).

Combinatorial interaction testing (CIT) aims at using interaction coverage as testing
criteria to sample product configurations for testing (KUHN; KACKER; LEI, 2013). It is based
on the observation that most faults emerge by means of interactions between a small number of
features (KUHN; WALLACE; GALLO, 2004). For interactions between any t features of SPLs,
CIT is also referred to as T-wise testing (PERROUIN et al., 2010).

The T-wise coverage criterion, defined below, aims at supporting the sampling process
from the set of all possible combinations of selected and unselected features. These combinations
(or interactions) are called a t-set.

Definition 2.3.1. (Valid t-set) A valid t-set is a set of features {± f1,± f2, ...,± ft} satisfying
the constraints defined by the feature model FM over the set of features F , where t < |F |, + fi

indicates a selected feature i and − fi an unselected one. A T-set is invalid if it does not satisfy
the constraints of FM.

Definition 2.3.2. (T-wise Coverage) The t-wise coverage of a set of test configurations TCS =

{PC1,PC2, . . . ,PCm} is the ratio Tt =
|∪m

i=1Tt,PCi |
|Tt,FM | , where Tt,PCi is the set of t-sets included within

the configuration PCi, Tt,FM is the set of all the possible t-sets of the FM, and |A| denotes the
cardinality of the set A.

Configuration similarity

Studies in software testing have shown that similar test cases tend to have equivalent
fault detection capabilities. Therefore, no additional gain should be expected when these are
simultaneously executed (CARTAXO; MACHADO; NETO, 2011). To mitigate these issues,
similarity has been used as test selection, minimization and prioritization criterion (YOO; HAR-
MAN, 2012) for access control testing (BERTOLINO et al., 2015; DAMASCENO; MASIERO;
SIMAO, 2018) and SPL testing (HENARD et al., 2014; AL-HAJJAJI et al., 2017).

In configuration similarity, a similarity metric describes a similarity relation between
two configurations as a numeric value. Similarity metrics often range from zero, if product
configurations are totally distinct, to one, if they implement the same set of features.

The Hamming distance is a well-known measure (DEZA; DEZA, 2013) that has been
used to calculate the similarity between product configurations (AL-HAJJAJI et al., 2017). It
is represented as the normalized number of common selected and unselected features for two
configurations:
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Definition 2.3.3. (Configuration similarity) The configuration similarity between two product
configurations pi, p j from a feature model FM with the set of features F is defined as follows:

con f Sim(pi, p j,F) =
|pi ∩ p j|+ |(F∖pi)∩ (F∖p j)|

|F |
(2.1)

In the con f Sim() metric, |pi ∩ p j| denotes the number of common features selected between pi

and p j and |(F∖pi)∩ (F∖p j)| represents the number of common unselected features between
them. These two values are normalized by the total number of features |F |.

2.3.1.2 Family-based analysis

Family-based analysis operates on domain-level artifacts that incorporate knowledge
about valid feature combinations. Thus, not every individual product is analyzed, and redundant
computations are minimized or avoided (THÜM et al., 2014a). The performance of family-based
strategies is mainly influenced by the number and size of features and the amount of sharing
during combinations, while product-based strategies often face costs proportional to the number
of valid configurations (BRABRAND et al., 2012). In the next section, we introduce the Featured
Finite-state Machine notation (FRAGAL; SIMAO; MOUSAVI, 2017; FRAGAL, 2017) for
expressing the behavior of individual features and feature combinations of product-lines.

2.3.1.2.1 Featured Finite-state Machines

The Featured Finite-state Machine is a model that extends FSMs (GILL, 1962) with
feature constraints to express the behavior of SPLs.

Definition 2.3.4 (Featured Finite-state Machine). An FFSM is a septuple ⟨F,Λ,C,c0,Y,O,Γ⟩,
where: F is a finite set of features, Λ is the set of product configurations, C ⊆ S×B(F) is a
finite set of conditional states, where S is a finite set of state labels, B(F) is the set of all feature
constraints, and C satisfies the condition:

∀(s,φ) ∈C, ∃ρ ∈ Λ|ρ � φ (2.2)

c0 = (s0, true) ∈ C is the initial conditional state of the FFSM, Y ⊆ I ×B(F) is a finite set of
conditional inputs, where I is the finite set of input symbols, O is the finite set of output symbols,
and Γ ⊆C×Y ×O×C is the set of conditional transitions satisfying the condition:

∀((s,φ),(x,φ ′′),o,(s′,φ ′)) ∈ Γ,∃ρ ∈ Λ|ρ � (φ ∧φ
′∧φ

′′) (2.3)

Example 2.3.2. (The Arcade Game Maker FFSM) Figure 8 depicts an FFSM for the AGM
SPL. The conditional state Save Game[S] and all conditional transitions reaching or leaving it
are implemented by all products implementing feature S. The FSM in Figure 5 is an example of
FSM derived using the configuration ρ = (AGM∧A∧M∧L∧V ∧Y ∧P∧W ∧¬S∧¬B∧¬N).
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Figure 8 – FFSM of the AGM

Source: Adapted from Fragal (2017).

Conditions (2.2) and (2.3) ensure that all conditional states and transitions are present in
at least one valid product of the SPL. A conditional state c = (s,φ) ∈C is alternatively denoted
by s[φ ]. A conditional transition (c,(x,φ),o,c′) from conditional state c to c′ with conditional

input x and output o is alternatively denoted c
x[φ ]/o−−−→ c′. The logical operators and, or and not

are denoted by the symbols &, |, and ¬, respectively. An omitted condition means that the
condition is true.

Given an FFSM FF = ⟨F,Λ,C,c0,Y,O,Γ⟩ and a configuration ρ ∈ Λ, the model deriva-
tion operator ∆ρ (FRAGAL; SIMAO; MOUSAVI, 2017) derives a product FSM ∆ρ =(S,s0, I,O,D),
where: S = {s|(s,φ) ∈C∧ (φ � ρ)} is the set of states; s0 = s,c0 = (s,φ) ∈C is the initial state;
and D = {(s,x,o,s′)|((s,φ),(x,φ ′),o,(s′,φ ′′)) ∈ Γ∧ρ � (φ ∧φ ′∧φ ′′)} is the set of transitions.

To make FFSMs suitable for MBT, Fragal, Simao and Mousavi (2017) have proposed
a validation technique to check whether an FFSM satisfies the basic properties of FSMs, i.e.,
determinism, completeness, initially connectedness, and minimality, at the product-line level.
Added to this, they have also shown that their proposed SPL-level validation is sound, i.e., if an
FFSM satisfies these properties, so do all the FSM products that can be derived from it.

Additionally, the FFSM notation has been extended to generate configurable test suites
that can be pruned using feature constraints for groups of product configuration (FRAGAL et

al., 2018). The readability of FFSMs also has been improved by grouping up conditional states
and transitions into hierarchical entities (FRAGAL; SIMAO; MOUSAVI, 2019). Therefore, the
FFSM notation has the prospect of serving as a suitable basis for SPL modeling and testing.

2.4 Final remarks

In this section, we have presented the theoretical background and literature that supports
this PhD thesis. We have discussed the concept of software testing, with an emphasis on FSM-
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based testing, and how the lack of model maintenance may affect this activity. We have introduced
model learning, how it can support software analysis and testing, and what improvements can
be made to speed up the learning process by means of adaptive learning. We have discussed
how techniques for model comparison be used to quantify the performance of automata learning
algorithms. Finally, we have introduced software product lines and the FFSM notation for
modeling behavioral variability in product-lines.

Along with this chapter, we have highlighted a few research gaps in the software engi-
neering literature that we have explored as motivation to the development of this PhD thesis.
In the next chapters, we go deeply into each of these gaps and address them by improving the
state-of-the-art of model learning algorithms.
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CHAPTER

3
ADAPTIVE MODEL LEARNING FOR

EVOLVING SYSTEMS

According to Binder (1999), software analysis is necessarily a model-based activity,
whether models are in engineers’ minds, informally sketched on papers, or formally denoted as
explicit models (BROY et al., 2005). Explicit models are useful assets in the development of
software-intensive systems as they pave the way to automated analysis (GURBUZ; TEKINER-
DOGAN, 2018). Nevertheless, as requirements change over time, model maintenance is often
neglected due to its cost, and models are rendered outdated (WALKINSHAW, 2013).

To tackle this issue, active model learning (ANGLUIN, 1987) has been increasingly
popular to derive behavioral models automatically (IRFAN; ORIAT; GROZ, 2013; MARIANI;
PEZZÈ; ZUDDAS, 2015; VAANDRAGER, 2017). Model learning aims at building a hypothesis
H about the “language” (i.e., reactive behavior) of a system under learning (SUL) by iteratively
providing input sequences and observing outputs (VAANDRAGER, 2017). To formulate a
hypothesis H about the SUL’s behavior, a learning algorithm searches for pairs of transfer and
separating sequences to reach and distinguish states, respectively. Nevertheless, traditional model
learning algorithms often do not scale to real systems (DUHAIBY et al., 2018). Additionally,
the constant changes along the life-cycle (CHAKI et al., 2008) may require frequent re-work,
i.e., learning from scratch.

Adaptive learning (GROCE; PELED; YANNAKAKIS, 2002) attempts to speed up model
learning by reusing the knowledge from existing models of evolving system. Studies (CHAKI et

al., 2008; GROCE; PELED; YANNAKAKIS, 2002; WINDMÜLLER et al., 2013; HUISTRA;
MEIJER; VAN DE POL, 2018) have shown that pre-existing models can steer learning by reusing
the sequences applied in the past queries and hence, reduce the cost for model re-inference.
However, after several changes, old separating sequences may lead to deprecated queries; and
former transfer sequences may become redundant. These are known to be major threats to
efficient adaptive model learning (HUISTRA; MEIJER; VAN DE POL, 2018).
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In this chapter, we report our findings for our first research objective to investigate
optimization strategies to re-learn models of fixed quality using adaptive learning and mitigate
threats to its performance led by deprecated and redundant sequences. To address these issues,
we introduce the partial-Dynamic L*M (∂L*M) algorithm, an adaptive technique where the cost
for learning models from systems evolving over time is reduced employing an on-the-fly search
for redundant and deprecated sequences in reused observation tables.

We present an empirical study comparing our technique against three state-of-the-art
adaptive algorithms and evaluating how these sequences can hamper adaptive model learning.
Through this chapter, we address the following research questions:

(RQ1.1) Is the partial-Dynamic L*M algorithm more efficient than the state-of-the-art adaptive
learning techniques?

(RQ1.2) Is the effectiveness of adaptive learning strongly affected by the temporal distance between
versions?

In this study, we relied on the LearnLib framework (ISBERNER; HOWAR; STEFFEN,
2015) to evaluate adaptive model learning algorithms. We have used as subject systems 18
Mealy machines from a large-scale analysis of the OpenSSL project (DE RUITER, 2016), an
open-source and commercial-grade cryptographic toolkit (OpenSSL Foundation, Inc., 2018a).

To answer RQ1.1, we have used the number of membership queries (MQ) to learn models
with a fixed level of accuracy as a measure of effectiveness. To answer RQ1.2, we have used the
temporal distance between versions, denoted by the difference between their release dates as
measure of software evolution. We have opted for this metric because structural changes (e.g.,
changed transitions) in a black-box setting are unknown and behavioral metrics (e.g., percentage
of failed tests) may mislead minor modifications closer to initial states compared to significant
changes.

To date, there is a lack of studies on the pros and cons of adaptive learning and how much
extra (and irrelevant) queries it may pose if low-quality models are reused. This chapter provides
essential insights to fill in this gap and improve upon the state-of-the-art adaptive model learning
algorithms. The partial-Dynamic L*M algorithm has been published as a regular paper at the
15th International Conference on integrated Formal Methods (iFM) held in Bergen, Norway
(DAMASCENO; MOUSAVI; SIMAO, 2019b).

The remaining of this chapter is organized as follows: in section 3.1, we introduce the
partial-Dynamic L*M algorithm for adaptive learning. in section 3.2, we present our experimental
design to evaluate the effects of reusing sequences and its correlation with model quality. in
sections 3.3, we analyze the results obtained from our experiments. in section 3.4, we enumerate
the threats to validity of this investigation. in Section 3.5, we discuss our findings. in section 3.6,
we draw our final remarks about our findings.
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3.1 The partial-Dynamic L*
M algorithm

In a software development life cycle, significant changes can lead to adaptive model
learning algorithms posing irrelevant queries composed by redundant and deprecated sequences.
As redundant queries, we mean those queries applied in the past to previous versions and com-
posed by transfer sequences formerly able to access different states in the SUL. As deprecated

queries, we mean those queries posed to previous versions and composed by separating se-

quences that no longer distinguish states in the SUL. Thus, the calculation of “useful” subsets of
sequences should help to mitigate risks for adaptive learning algorithms (HUISTRA; MEIJER;
VAN DE POL, 2018).

To find these “useful” subsets of sequences, we designed the partial-Dynamic L*M (∂L*M)
algorithm. The ∂L*M algorithm is a novel adaptive learning technique that improves upon the
state-of-the-art by exploring observation tables on-the-fly to avoid irrelevant queries rather than
indiscriminately re-asking MQs.

The term partial applies as the ∂L*M algorithm explores reused observation tables on-the-

fly using depth-first search (DFS) to find redundant prefixes, and breadth-first search (BFS) to
find deprecated suffixes. Hence, it attempts to find “useful” parts of the observation table leading
to an equivalent state coverage and separating capability by reusing fewer queries. A schematic
overview of the ∂L*M algorithm is depicted in Figure 9.
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Figure 9 – partial-Dynamic L*M - Schematic overview

Source: Elaborated by the author.
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As indicated in Figure 9, the ∂L*M algorithm comprises three sequential steps that we
discuss in the next sections. To illustrate the steps comprising our algorithm, we use an updated
version of the windscreen wiper system as a running example of an evolving system.

Example 3.1.1. (Updated windscreen wiper) Let the FSMs in Figure 3 be the reference version
vre f , and the one in Figure 10 be the updated version vupdt of a hypothetical evolving system.
Added states and transitions are depicted in dotted lines.
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Figure 10 – Windscreen wiper with permanent movement

Source: Elaborated by the author.

We refer to their representation as minimal-complete FSMs and counterpart elements as
Mr = ⟨Qr,q0r , Ir,Or,δr,λr⟩ and Mu = ⟨Qu,q0u, Iu,Ou,δu,λu⟩.

3.1.1 On-the-fly exploration of the reused table

Let Sr and Er be the sets of prefixes and suffixes respectively from an observation table
OTr = (Sr,Er,Tr). Since we do not know the internal implementation of vupdt , OTr may be
outdated, redundant prefixes may emerge from Sr and hence, they may no longer reach the same
distinct states (HUISTRA; MEIJER; VAN DE POL, 2018). Thus, an updated observation table
OTR′ = (SR,Er,TR′) has to be created by restoring the agreement of OTr to vupdt employing MQs.

To achieve this goal, we explore the tree representation of Sr · Iu using depth-first search
(DFS) to pose MQs on-the-fly and build an updated table OTR′ . Thus, we mitigate the risks for
indiscriminately re-asking queries that may not lead to useful observations.

During the on-the-fly construction of this tree representation, we identify prefixes leading
to states already discovered by Er and discard their extensions to find a well-formed cover subset
SR ⊆ Sr. In this tree representation, paths leading from the root to nodes represent elements from
the subset Sr · Iu. Nodes are annotated using rows of the updated observation table OTR′ .

Example 3.1.2. (Well-formed cover subset) In Figure 11, we depict a fragment of the tree
representation for an OTR′ built from an outdated observation table where the set of prefixes is
Sr = {ε , swItv, swItv · rain, swItv · rain · rain, wItv · rain · rain · swItv, rain} and the set of suffixes
is Er = {rain, swItv, swPrm, rain · rain}.
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Figure 11 – Well-formed cover subset SR generated from Sr

Source: Elaborated by the author.

Black arrows denote the well-formed cover subset. Discarded prefixes are depicted in
gray. The cost to find this well-formed cover subset is 40 MQs, in contrast to 76 MQs, to completely
restore the agreement of OTr to vupdt .

3.1.2 Building an experiment cover tree

Once we find a subset SR ⊆ Sr, we use the upper part from OTR′ = (SR,Er,TR′) to search
for an experiment cover subset. An experiment cover subset ER ⊆ Er is obtained by picking one
representative element from each subset of equivalent suffixes (CHAKI et al., 2008).

To address this task, we propose an optimization technique that runs a breadth-first search
(BFS) on a tree representation of Er, referred to as an experiment cover tree. The construction of
this tree is performed similarly to homing trees (BROY et al., 2005).

Definition 3.1.1. (Experiment cover tree) Consider an updated observation table OTR′ =(SR,Er,TR′)

and an input domain Iu; an experiment cover tree is a rooted tree that satisfies the following
constraints:

1. The root node is labeled as lbl(root) =Col(SR,ε);

2. Each edge e is labeled with one suffix e ∈ Er;

3. Each node n linked to parent np by edge e is labeled as lbl(n) =Col(lbl(np),e);

4. Non-leaf nodes n have outgoing edges for all suffixes Er∖ER(n), where ER(n) is the set of
suffixes labeling the edges in the path from root to n;

5. A node n is leaf iff

a) for all Bi ∈ lbl(n), |Bi|= 1; otherwise

b) there is a lower node nl where lbl(n) = lbl(nl).
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The experiment cover tree is built using BFS and, if a node d satisfying 5a is found, the
suffixes labeling the path from root to d is returned as the experiment cover subset ER. Otherwise,
we traverse the experiment cover tree and the first node d found with maximum separating
capability is selected as the ER, i.e., max(|Col(SR,ER(d))|). Neither MQs nor EQs are posed.

Example 3.1.3. (Experiment cover) Figure 12 shows a fragment of the experiment cover tree gen-
erated from the subset SR in Figure 11 and the set of suffixes Er = {rain,swItv,swPrm,rain · rain}.
The subset ER is highlighted in black.

rain
rain · rain

swItv

{ε,swItv·rain,
swPrm}
{swItv}

{ε,swItv}
{swItv·rain,
swPrm}

{ε,swPrm}
{swItv·rain}
{swItv}

{ε,swItv,swItv·rain, swPrm}

{ε,swItv·rain,
swPrm}
{swItv}

swPrm

{ε}{swItv} {swItv·rain}
{swPrm}

swPrm

Figure 12 – Experiment cover tree

Source: Elaborated by the author.

3.1.3 Running L*M using the outcomes of ∂L*M

At this stage, our approach has discarded redundant prefixes and deprecated suffixes.
Hence, we initialize the L*M algorithm using the well-formed and experiment cover subsets, rather
than Su = {ε} and Eu = I. As results, we expect to build an observation table with higher state
discovery capability in the first iteration utilizing fewer queries, especially if both versions vre f

and vupdt are not drastically different.

Example 3.1.4. In Table 7, we summarize the number of MQs and EQs posed to the SULs
depicted in Figures 3 and 10 by the following five model learning algorithms: L*M (SHAHBAZ;
GROZ, 2009); our ∂L*M; an adaptive approach, referred to as Adp, where L*M starts with suffixes
from a previous version (HUISTRA; MEIJER; VAN DE POL, 2018); and two straightforward
implementations of the Dynamic L* (CHAKI et al., 2008) algorithm for Mealy machines, referred
to as DL*M and DL*M+. The latter differs by restoring the properties of closedness and consistency to
avoid the loss of prefixes s1,s2 ∈ SR, where s1 ∼= s2 and ∃(i,e)∈ (Iu,Er),TR′(s1 · i,e) ̸= TR′(s2 · i,e).
In this example, the ∂L*M algorithm posed fewer MQs than the other methods.
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Table 7 – Reuse approaches and numbers of queries

Algorithm
Reuse Restore

SUL OT Number of
Prefixes Suffixes properties MQs EQs

L*
M - - -

vre f - 18 2
vupdt - 48 2

Adp No Complete No vupdt OTr 48 1
DL*M Indiscriminate

No vupdt OTr 76 2
DL*M+ Yes vupdt OTr 81 1
∂L*M On-the-fly No vupdt OTr 43 1

Source: Elaborated by the author.

3.2 Empirical evaluation

According to Huistra, Meijer and van de Pol (2018), the more the states of an SUL have
been changed, the lower is the number of suffixes with good quality. Therefore, a higher number
of irrelevant queries should be expected to be posed by the state-of-the-art adaptive learning
algorithms, especially when older versions are reused.

3.2.1 Research questions

To evaluate adaptive learning techniques in different settings, we have extended the
LearnLib framework (ISBERNER; HOWAR; STEFFEN, 2015) with the algorithms from Table 7.
Thus, we investigated if our ∂L*M algorithm was more efficient than three state-of-the-art adaptive
algorithms (RQ1.1) and the impact of temporal distance in their effectiveness (RQ1.2).

In Table 8, we show the hypotheses formulated about the influence of the temporal
distance between versions on the number of queries, denoted by ∆T; and the average difference
between the number of MQs and EQs posed by adaptive learning algorithms and the L*M for
traditional model learning, respectively denoted by µMQ and µEQ.

Table 8 – Hypotheses - Learning to Reuse Models

Measure Hypotheses Description

µMQ
HµMQ

0 The ∂L*M requires an equivalent µMQ
HµMQ

1 The ∂L*M requires a higher µMQ
HµMQ

2 The ∂L*M requires a lower µMQ

µEQ
HµEQ

0 The ∂L*M requires an equivalent µEQ
HµEQ

1 The ∂L*M requires a higher µEQ
HµEQ

2 The ∂L*M requires a lower µEQ

∆T
H∆T

0 The ∂L*M is influenced by the temporal distance
H∆T

1 The ∂L*M is not influenced by the temporal distance
Source: Elaborated by the author.
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As a measure of software evolution, we have used the temporal distance between versions
in terms of their release dates. We have opted for this metric as structural changes (e.g., changed
transitions) in black-box settings are unknown, and behavioral metrics (e.g., percentage of failed
test cases) may mislead minor modifications closer to initial states compared to significant
changes (WALKINSHAW; BOGDANOV, 2013). As a measure of effectiveness, we have used
the number of MQs and EQs posed by each adaptive learning algorithm compared to traditional
learning using the L*M algorithm (SHAHBAZ; GROZ, 2009) in terms of numbers of resets and
input symbols.

For each scenario ⟨vl,OTr⟩ where vl is an SUL and OTr is an observation table built
from a reference version vr, we used the Mann-Whitney-Wilcoxon (MWW) to check if there
was statistical significance (p < 0.01) between the difference of numbers of queries posed by
each adaptive algorithms. To measure the scientific significance (KAMPENES et al., 2007) and
the probability of one algorithm outperforming another (ARCURI; BRIAND, 2011), we used
the Vargha-Delaney’s Â effect size (VARGHA; DELANEY, 2000; WOHLIN et al., 2012). If
Âc,t < 0.5, then the treatment t poses more queries than the control c. If Âc,t = 0.5, they are
equivalent. To categorize the magnitude, we used the intervals between Âc,t and 0.5 (HESS;
KROMREY, 2004; TORCHIANO, 2017): 0 ≤ negligible < 0.147 ≤ small < 0.33 ≤ medium <

0.474≤ large≤ 0.5. Finally, we used Pearson’s correlation coefficient to evaluate the relationship
between the temporal distance between versions ⟨vl,vr⟩ to the numbers of MQs and EQs.

3.2.2 Subject systems

As our evolving system, we have used 18 Mealy machines learned in a large scale analysis
of several versions of OpenSSL (DE RUITER, 2016), an open-source and commercial-grade
cryptographic toolkit (OpenSSL Foundation, Inc., 2018a). In Figure 13, we depict the versioning
schema for over 14 years of development branches from the server-side of OpenSSL.

1.0.2 
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1.1.0-pre1 
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0.9.7 
(17) 

0.9.7c 
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(11) 

0.9.8m 
(10) 
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(10) 

0.9.8f 
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(12) 

0.9.8za 
(9) 

1.0.0 
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1.0.0f 
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1.0.0h 
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1.0.0m 
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1.0.1 
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1.0.1h 
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Figure 13 – OpenSSL server-side: 18 FSMs versions used as SUL

Source: Adapted from de Ruiter (2016).
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In this versioning scheme, SULs are denoted by white boxes with arrows pointing out to
their previous release in the branch, the number of implemented states are shown in parentheses,
and dashed areas indicate groups of versions with behavioral overlaps (i.e., equivalent FSMs).
These are important information to quantify the distance between versions.

3.2.3 Experimental design

Let ⟨vl,OTr⟩ be a learning scenario where vl is the SUL, and OTr is an observation table
built from a reference version vr. For all 18 versions of the OpenSSL project and their precedents,
we measured the difference between the numbers of resets and symbols in MQs and EQs posed by
each adaptive algorithm and L*M and their temporal distance in years. Positive difference values
indicate that adaptive learning posed more queries than traditional learning.

For each reused reference version vr, we generated 500 observation tables OTr =

(Sr,Er,Tr) composed by prefix-closed state cover sets Sr created using randomized DFS, and
Er = Iu ∪Wr, where Wr is a W set for vr; and calculated the µMQs and µEQs. For processing CE,
we used the Suffix1by1 (IRFAN; ORIAT; GROZ, 2010), and the CLOSE_FIRST strategy to close
tables (LearnLib, 2018). In order to build EQs, we used the Wp method for conformance testing
(FUJIWARA et al., 1991) with an upper bound equal to m = 2.

3.2.4 Experiment artifacts

For the sake of reproducibility and repeatability, we have made publicly available a lab
package with a variety of artifacts (e.g., source code, test scripts, FSMs). The lab package is
at the link <https://github.com/damascenodiego/DynamicLstarM/releases/tag/iFM2019>. This
repository is organized as a Java project that can be opened using the Java Development Kit
version 1.8 (ORACLE, 2014) and the Eclipse IDE (ECLIPSE, 2019).

The coding artifacts of this project are in the br.usp.icmc.labes.mealyInference
package. In this package, we have implemented java classes to support a command-line interface
(CLI) developed to automate our experiments execution. The mealyInference/mylearn.jar
jar file is a compiled version of the partial-Dynamic L*M algorithm. This software has been
developed using the libraries LearnLib and AutomataLib (RAFFELT; STEFFEN, 2006).

In folder mealyInference/Experiments/2019_02_iFM, we have included our exper-
iment results and experiment scripts. The raw outputs of our experiments are available in the file
mealyInference/Experiments/2019_02_iFM/run_2019021.zip. To replicate our experi-
ment, there are the mealyInference/Experiments/2019_02_iFM/exp_nordsec16.sh and
mealyInference/Experiments/2019_02_iFM/util.R scripts. FSM models of the subject
systems are found in folder mealyInference/Benchmark/Nordsec16.

https://github.com/damascenodiego/DynamicLstarM/releases/tag/iFM2019
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3.3 Analysis of results
In this section, we analyze the µMQs and µEQs posed by the adaptive algorithms and

their relationship to the temporal distance within ⟨vl,vr⟩. We calculated the average differences
between the numbers of symbols and resets in MQs and EQs posed by each adaptive algorithm
and learning from scratch using the L*M algorithm.

By analyzing the release dates of all versions (OpenSSL Foundation, Inc., 2018b), we
identified a strong positive correlation (r = 0.72) between the temporal distance and variation in
numbers of states implemented in each version. In Figure 14, we show the correlation between
the temporal distance and variation in numbers of states implemented between all pairs of
OpenSSL versions.

R = 0.72 , p < 2.2e-16

-4

0

4

8

0 5 10
Δ time (Years)

Δ 
nu

m
be

r o
f s

ta
te

s

Correlation between structural and temporal distance

Figure 14 – Pearson’s correlation between variation in number of states and temporal distance

Source: Research data.

These results corroborate de Ruiter (2016) findings that the OpenSSL project has im-
proved over time, and recent versions became more succinct in terms of their size, i.e., variation
of number of states. These findings indicated that the OpenSSL project represents an interesting
case study for evolving systems that can pose challenges to adaptive learning algorithms, such as
the reuse of older versions may impact the performance of adaptive learning, realistic size and
structure, the possibility of infinite behavior, and the existence of states with similar or identical
behavior in different versions.

3.3.1 Average difference of EQs

In Figures 15a and 15b, we depict boxplots for the numbers of resets and symbols in the
µEQs as a function of the temporal distance between ⟨vl,vr⟩. To keep the figure uncluttered, we
calculated the boxplots for time windows of one year. Outliers are depicted as red dots.
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Figure 15 – Boxplots of the µEQs posed by adaptive and traditional learning
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Figure 16 – Histograms of the effect sizes for EQs posed by the adaptive algorithms
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Source: Research data.

By analyzing the µEQs and the learned observation tables, we found that the set of
suffixes composed by Iu has been a good set of separating sequences. The Iu set has enabled
us to distinguish most of the states implemented in the OpenSSL versions. Thus, as our reused
observation tables included Iu, the resulting µEQs happened to be quite similar. Hence, the
whiskers in our boxplots were presented very close to the averages.

In Figures 16a and 16b, we show histograms to the effect size for the numbers of resets
and symbols in EQs, where ∂L*M is the control method. The MWW test indicated a statistically
significant difference (p < 0.01) between ∂L*M and the other adaptive algorithms; however, as the
histograms indicate, the effect sizes were mostly categorized as negligible.

Additionally, Pearson’s correlation coefficient indicated a very weak to no correlation

between µEQs and temporal distance. The number of rounds was approximately the same, i.e.,
one round for all versions with less than 14 states and two to five for all other versions. These
findings support the hypothesis HµEQ

0 that our adaptive learning algorithm ∂L*M required an µEQs
similar to traditional learning.
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3.3.2 Average difference of MQs

In Figures 17a and 17b, we depict boxplots to numbers of resets and symbols in the
µMQs as a function of the temporal distance between vl and vr. To keep the figure uncluttered,
we calculated the boxplots for time windows of one year. Outliers are depicted as red dots.

By analyzing the µMQs, we found that Adp posed around 50 additional MQs when versions
older than four years were reused. For the DL*M and DL*M+ algorithms, we have found an increment
on the µMQs of up to 800 extra queries. Our results indicated significant increments in the total
number of MQs when the temporal distance was maximum (i.e., 14 years).

For the existing adaptive learning algorithms, we found a strong to very strong correlation
between µMQs and the temporal distance within ⟨vl,vr⟩. Thus, our findings corroborate to Huistra,
Meijer and van de Pol (2018) where the quality of the reused sequences has been a factor that can
undermine the performance of adaptive learning techniques. Consequently, the existing adaptive
learning algorithms posed a large number of MQs composed of redundant prefixes and deprecated

suffixes.

Differently from the state-of-the-art adaptive learning algorithms, our ∂L*M algorithm
turned out to be more robust than the other adaptive techniques. In Figures 18a and 18b, we show
histograms for the effect sizes of the numbers of resets and symbols posed by the ∂L*M algorithm
compared to the three other adaptive techniques.

For the ∂L*M algorithm compared to the other algorithms, we found a significant difference
(p < 0.01) on the number of MQs, and a weak positive correlation between the µMQs and temporal
distance, with effect sizes mostly categorized as large. Thus, our results have favored the
hypothesis HµMQ

2 that identified the ∂L*M as the algorithm showing the lowest µEQs compared to
the other adaptive techniques. Thus, it has answered the RQ1 by placing our on-the-fly technique
as more efficient than the existing adaptive algorithms in terms of MQs.

3.3.3 Benefits of adaptive learning vs. temporal distance

For all the adaptive learning algorithms, Pearson’s correlation coefficients have indicated
very weak positive correlation (≤ 0.20) between the number of EQs and temporal distance. These
findings corroborate the mostly constant µEQ seen in Figures 15a and 15b.

For the algorithms Adp, DL*M and DL*M+, we observed the Pearson’s coefficients indicated
strong positive correlations (0.73, 0.78 and 0.80, respectively) between the number of MQs and
temporal distance. Alternatively, for our ∂L*M algorithm, we observed weak positive correlation
(0.33) between the number of MQs and temporal distance. Thus, we confirm the hypothesis H∆T

1

that the ∂L*M algorithm is not influenced by the temporal distance between versions and affirma-
tively answer RQ2 by showing that the effectiveness of existing adaptive learning techniques is
indeed affected by the temporal distance between versions.
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Figure 17 – Boxplots of the µMQs posed by adaptive and traditional learning
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Figure 18 – Histograms of the effect sizes for MQs posed by the adaptive algorithms
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Source: Research data.

3.4 Threats to validity

Internal validity: Threats to internal validity concern with the influences that can affect
the causal relationship between the treatment and outcomes. One element that forms a threat to
internal validity is the temporal distance between versions as a measure of software evolution.
We found a strong positive correlation (r = 0.72) between temporal distance and difference in
the numbers of states of the underlying FSMs. Thus, the temporal distance shall be a reasonable
measure, at least for this particular case. Failed test-cases may not be good measures as they do
not reflect the points of failure in the SUL semantics, e.g., minor changes close to initial states
compared to major changes on the language.

External validity: Threats to external validity concern with generalization. To guarantee
the reliability of our experiment results, we relied on the LearnLib framework (ISBERNER;
HOWAR; STEFFEN, 2015) to implement adaptive learning algorithms. Our study is based on
FSM models representing multiple versions of the OpenSSL toolkit, and it poses a threat to
external validity. However, since the OpenSSL project has realistic size and structure, we believe
that our results are generalizable to other reactive systems (SMEENK et al., 2015).
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3.5 Discussion

What are the implications for researchers? Our study complements the scientific
literature by introducing an approach inspired by the limitations of the state-of-the-art adaptive
algorithms (GROCE; PELED; YANNAKAKIS, 2002; CHAKI et al., 2008; WINDMÜLLER
et al., 2013; HUISTRA; MEIJER; VAN DE POL, 2018). Additionally, as the proposal of new
methods motivates empirical studies with existing algorithms, we have empirically compared
our technique against these adaptive algorithms. Finally, our research artifacts have been open-
sourced so that interested people can study our strategies and gain insights for improvements.

What are the implications for practitioners? Recent studies have shown model learn-
ing as suitable for addressing a wide range of software engineering tasks (AICHERNIG et al.,
2018). However, as promising in theory, they are also slippery and inefficient in real systems
(DUHAIBY et al., 2018). Therefore, we believe that our study can pave the way towards more
efficient applications of model learning in subject systems with realistic size and structure. Our
experimental artifacts have been implemented using the LearnLib project (LearnLib, 2017), a
state-of-the-art Java framework for automata learning.

What types of models may it work/not work? Currently, our approach has been de-
signed for SULs that incorporate changes in the behavioral level. Thus, the addition or deletion
of symbols in the input domain may hurdle our strategy’s performance. Two possible issues that
may be faced are an excessive pruning of the prefix tree (i.e., during the on-the-fly exploration)
or the experiment cover tree (i.e., during the second step of our algorithm). As a result, our
algorithm’s performance may become comparable to traditional learning, where the initial setup
starts from the empty sequence. A possible improvement for this limitation could be the reuse of
transfer or synchronizing sequences from non-initial states in the learning process.

3.6 Final remarks

Real systems pass through changes along their life-cycle. Thus, as we often do not know
how states may have changed, behavioral models tend to become outdated, incomplete, or even
deprecated. To deal with these issues, recent studies have proposed the application of active
model learning to derive behavioral models automatically.

Adaptive model learning is a variant of active learning which attempts to speed up model
inference by reusing transfer and separating sequences from previously learned observation
tables. However, software evolution tends to undermine the performance of state-of-the-art
adaptive learning. Hence, it may pose redundant and deprecated sequences. To date, there is a
lack of studies about the pros and cons of adaptive model learning and how much extra effort
it may pose when low-quality models are reused. We fill this research gap by performing an
empirical analysis of adaptive methods and comparing them against our novel technique.
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We have introduced a novel adaptive algorithm that explores observation tables on-the-fly

to avoid irrelevant MQs, called ∂L*M. Using 18 versions of the OpenSSL toolkit, we showed
that state-of-the-art adaptive algorithms mostly show a strong positive correlation between the
number of MQs and temporal distance between the reused and learned versions.

Alternatively, our ∂L*M algorithm presented a weak positive correlation between temporal
distance and MQs. Thus, our algorithm turned out to be less sensitive to software evolution and
more efficient than current approaches for adaptive learning. Also, our ∂L*M algorithm posed
fewer MQs compared to three state-of-the-art adaptive learning algorithms.

In this study, we move towards addressing adaptive learning algorithms’ performance
issues for evolving systems and mitigating the reuse of redundant and deprecated sequences.
Additionally, we fill the research gap of studies comparing adaptive learning methods using
subject systems with realistic size and structure, the possibility of infinite behavior, and the
existence of states with similar or identical behavior in different versions.

The partial-Dynamic L*M algorithm has been published as a regular paper at the 15th
International Conference on integrated Formal Methods (iFM) that was held in Bergen, Norway
(DAMASCENO; MOUSAVI; SIMAO, 2019b). For the sake of reproducibility and repeatability,
we have open-sourced our code artifacts, FSMs, and test scripts in a lab package available on
GitHub at the page <https://damascenodiego.github.io/DynamicLstarM/>.

This chapter presents one of the earliest investigations of this PhD research. Early designs
of this idea have emerged from meetings with prof. Dr. Mohammad Reza Mousavi and prof.
Dr. Adenilso Simao and pilot experiments performed in the first half of 2017. This research has
been carried out using computational resources of the Center for Mathematical Sciences Applied
to Industry (CeMEAI) funded by FAPESP (grant 2013/07375-0). Additionally, we are grateful
to the VALidation and Verification (VALVE) research group from the University of Leicester
(England), and the Software Engineering Lab (LabES) from the University of Sao Paulo (Brazil)
for their insightful suggestions and technological infrastructure.

https://damascenodiego.github.io/DynamicLstarM/




73

CHAPTER

4
FAMILY MODEL LEARNING FOR PRODUCT

LINES

Analyzing software product lines (SPL) on a product-based basis is very demanding and
cumbersome, due to the number of possible products (THÜM et al., 2014a), crosscutting features
(SCHAEFER et al., 2012), and the need to cater for possible feature interactions (APEL et al.,
2013). Hence, family-based approaches have been developed to facilitate the analysis of SPLs
without going individually through each and every product (BENDUHN et al., 2015; CLASSEN
et al., 2013; BEOHAR; MOUSAVI, 2014; FRAGAL; SIMAO; MOUSAVI, 2017). Such family-
based approaches pave the way for efficient model-based analysis of SPL and typically involve a
variability-aware behavioral specification referred to as a family model (THÜM et al., 2014a) or
150% model (BEUCHE; SCHULZE; DUVIGNEAU, 2016).

Family models are annotated with feature constraints to express the combination of
features involved in product-specific concerned parts of the model (THÜM et al., 2014a).
Thus, using SAT solvers (BERRE; PARRAIN, 2010), family models are amenable to family
model-based testing (UTTING; PRETSCHNER; LEGEARD, 2012) and family model checking
(BAIER; KATOEN, 2008) where redundant analysis are mitigated. Additionally, the cost of
family-based analysis is mainly determined by the number and size of features and the amount
of feature sharing, rather than the number of valid products (THÜM et al., 2014a).

Model-based techniques designed explicitly to family models have enabled efficient
test case generation (ATLEE et al., 2015; BEOHAR; MOUSAVI, 2016; FRAGAL; SIMAO;
MOUSAVI, 2017) and model checking (SABOURI; KHOSRAVI, 2013; TER BEEK; DE VINK;
WILLEMSE, 2017). Nevertheless, the creation and maintenance of test models are known to
be difficult, time consuming and error-prone (UTTING; PRETSCHNER; LEGEARD, 2012).
Additionally, the traceability between the family- and variability models can be complex due to
crosscutting features (SCHAEFER et al., 2012). Thus, as new requirements emerge and products
evolve, the lack of maintenance may render outdated models (WALKINSHAW, 2013).
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Motivated by these issues, in this chapter we discuss how the creation and maintenance
of family models can be performed using techniques for automata learning (WALKINSHAW;
BOGDANOV, 2013), feature model analysis (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010),
and product sampling (VARSHOSAZ et al., 2018). To address these tasks, we have introduced
the FFSMDiff algorithm, a technique to learn family models by comparing and merging product
models into a succinct virtual representation that incorporates variability constraints to express
product-specific behaviors. The representation is said virtual as it can also describe optional or
mutually exclusive behavior (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010).

Our algorithm extends a technique for analyzing the effectiveness of automata learning
algorithms (WALKINSHAW; BOGDANOV, 2013) to the domain of product lines by incorporat-
ing variability to indicate product-specific behaviors as feature constraints. Hence, we compare
product FSMs to map feature constraints to their states and transitions, and merge them into a
featured finite state machine (FFSM) (FRAGAL; SIMAO; MOUSAVI, 2017; FRAGAL et al.,
2018). An FFSM is a family-based formalism for unifying Mealy Machines (BROY et al., 2005;
GILL, 1962) specifying valid products of an SPL into a single representation by annotating states
and transitions with feature constraints (FRAGAL et al., 2018).

We have also employed the T-wise product sampling criteria (VARSHOSAZ et al., 2018)
as a configuration query (CQ) oracle in family model learning. A CQ oracle is an entity that we
have designed to search for subsets of individual products to be learned and, hence, reduce
the costs for building precise family models. We incorporate similarity measures developed
by Walkinshaw and Bogdanov (2013) to quantify the precision of family models learned from
sampled sets of valid product configurations.

To evaluate our approach, we have used an extensive benchmark of abstract representation
of SPLs (CLASSEN, 2010; SAMIH et al., 2014; FRAGAL; SIMAO; MOUSAVI, 2017). First, we
have evaluated the succinctness of the learned family models concerning the size of individual
product models and hand-crafted specifications. Second, we have analyzed the correlation
between degree of reuse and succinctness of learned models. Finally, we have measured the
precision of family models learned from products sampled by different CQ oracles. Thus, we
have addressed the following research questions (RQ):

(RQ2.1) Is our approach effective in learning succinct family models compared to the total size of
the products under learning?

(RQ2.2) Is the size of the learned family models influenced by the configuration similarity degree
of the products under learning?

(RQ2.3) Is our approach effective in learning succinct family models compared to the total size of
the hand-crafted models?

(RQ2.4) Is our approach effective in learning precise family models by sampling compared to
exhaustive learning?



4.1. Learning family models from product specifications 75

This chapter builds upon two manuscripts (DAMASCENO; MOUSAVI; SIMAO, 2019a;
DAMASCENO; MOUSAVI; SIMAO, 2020) that we have recently published as a full paper at
the 23rd International Systems and Software Product Line Conference held in Paris, France, and
submitted for a special issue on "Configurable Systems" in the Empirical Software Engineering
journal1. To analyze our algorithm, we have performed an extensive analysis using six abstract
representations of SPL from academic benchmarks (CLASSEN, 2010; SAMIH et al., 2014;
FRAGAL; SIMAO; MOUSAVI, 2017), among which there is an industrial situational awareness
system for helicopters flying in degraded visual environments (SAMIH et al., 2014). Furthermore,
we have evaluated the precision of models learned from products sampled using CQ oracles.

To our knowledge, this is the first study in learning variability-aware behavioral models
and evaluating the performance of product sampling to learn precise family models at a reduced
cost. Our approach can be helpful to domain engineering by supporting the inclusion of new
application requirements, SPL re-engineering (FENSKE; THüM; SAAKE, 2013), evolution
(MARQUES et al., 2019), and traceability analysis (VALE et al., 2017).

The remainder of this chapter is organized as follows: In Section 4.1, we introduce our
FFSMDiff algorithm to learn FFSMs from product specifications. In Section 4.2, we present a
process that incorporates product sampling for efficient family model learning. In Section 4.3, we
discuss an empirical evaluation to assess the effectiveness of our techniques. In Section 4.4, we
present the analysis of results obtained in our empirical evaluation. In Section 4.5, we enumerate
the threats to validity that we addressed in this study. In Section 4.6, we present a discussion
about our results. In Section 4.7, we close this chapter with our final remarks.

4.1 Learning family models from product specifications

Family models have been exploited as a theoretical foundation for efficient SPL analysis
(SABOURI; KHOSRAVI, 2013; BEOHAR; VARSHOSAZ; MOUSAVI, 2016; TER BEEK;
DE VINK; WILLEMSE, 2017). Albeit reasonably efficient, the creation of models is known
to be time-consuming, and error-prone, especially if there are crosscutting features and large
models (SCHAEFER et al., 2012). Additionally, software maintenance is often neglected due to
its cost, and, hence it may render outdated specifications (WALKINSHAW, 2013).

In this section, we introduce the FFSMDiff algorithm, a fully automated technique that
integrates feature model analysis into the process of structural comparison of state-based models,
discussed in Chapter 2; to annotate states and transitions with feature constraints to learn succinct
FFSM models (FRAGAL; SIMAO; MOUSAVI, 2017; FRAGAL et al., 2018) from individual
product specifications of SPLs. Although our technique is discussed in terms of FFSMs, it can be
extended to other family-based modeling approaches (BENDUHN et al., 2015), such as featured
transition systems (FTS) (CLASSEN et al., 2013; BEOHAR; MOUSAVI, 2014).

1 This journal manuscript is currently in the Rebuttal Phase
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4.1.1 The FFSMDiff algorithm

The FFSMDiff allows (i) to learn a fresh FFSM model from two product-specific FSMs
and (ii) to incorporate novel product-specific behavior into an existing FFSM model. The former
task can be useful when no FFSM exists a priori for a product line and the latter when there is a
new product configuration ρu ̸∈ Λr that is not specified into an FFSM FFr specifying a set of
configurations Λr from a product line.

For both cases, we assume that the feature model, the product-specific FSMs and con-
figurations of the products under learning are known a priori. For the product FSMs, these are
assumed to be previously hand-crafted, or learned using some variant of model learning (AN-
GLUIN, 1987; SHAHBAZ; GROZ, 2009) and satisfy the basic properties for FSM-based testing
and model learning, i.e., determinism, completeness, initially connectedness, and minimality.

4.1.2 Learning a fresh FFSM from two products specifications

Let Mr = ⟨Sr,s0r , Ir,Or,Dr,δr,λr⟩ and Mu = ⟨Su,s0u, Iu,Ou,Du,δu,λu⟩ be the FSMs of
two products pr and pu that implement configurations ρr = (

∧
f∈pr

f )∧ (
∧

f ̸∈pr
¬ f ) and ρu =

(
∧

f∈pu
f )∧ (

∧
f ̸∈pu

¬ f ). To learn a fresh FFSM from product-specific state machines, i.e., Mr

and Mu, there are two assumptions: (i) Mr and Mu are complete, deterministic, initially connected
and minimal FSMs built a priori, and (ii) their respective feature model and configurations ρr

and ρu are known a priori.

We employ feature model analysis to identify and annotate conditional states and transi-
tions identified using a technique to compare state machines (WALKINSHAW; BOGDANOV,
2013). Hence, to learn fresh FFSMs from two product-specific FSMs, we proceed as follows:

Definition 4.1.1 (FFSM learned from two configurations). An FFSM learned from ⟨Mr,Mu⟩ is a
tuple FF = ⟨F,Λ,C,c0,Y,O,Γ⟩, where

∙ F = (pr ∪ pu) is the set of features implemented by the two products

∙ Λ = {ρr,ρu} is the set of two configurations analyzed,

∙ C ⊆ (Sr ∪Su ∪ (Sr ×Su))×B(F) is the set of conditional states where

∀si ∈ Sr,s j ∈ Su | (si,s j) ∈ KPairs · ((a,b),ρr|ρu) ∈C,

∀si ∈ Sr,@s j ∈ Su | (si,s j) ∈ KPairs · (si,ρr) ∈C,

∀s j ∈ Su,@si ∈ Sr | (si,s j) ∈ KPairs · (s j,ρu) ∈C
(4.1)

∙ c0 = ((s0r ,s0u), true) ∈C is the initial conditional state,

∙ Y ⊆ (Ir ∪ Iu)×B(F) is a finite set of conditional input symbols,
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∙ O = (Or ∪Ou) is the finite set of output symbols

∙ Γ ⊆C×Y ×O×C is the set of conditional transitions where

– two transitions (si,x) ∈ Dr and (s j,x) ∈ Du are unified in the same conditional
transition if

∀(si,x) ∈ Dr,(s j,x) ∈ Du | λr(si,x) = λu(s j,x) = o,

δr(si,x) = sk,δu(s j,x) = sl,

(si,s j),(sk,sl) ∈ KPairs ·

((si,s j),φ),(x,(ρu|ρr)),o,((sk,sl),φ
′′)) ∈ Γ

(4.2)

– otherwise, for two transitions (si,x) ∈ Dr and (s j,y) ∈ Du, there are two independent
conditional transitions defined as follows:

∀(si,x) ∈ Dr,(s j,x) ∈ Du | λr(si,x) = or,δr(si,x) = sk,

λu(s j,y) = ou,δu(s j,y) = sl, ·

((si,φr),(x,ρr),or,(sk,φ
′′
r )) ∈ Γ,

((s j,φu),(y,ρu),ou,(sl,φ
′′
u )) ∈ Γ

(4.3)

Condition 4.1 ensures that product states are either unified into one conditional or two
distinct conditional states and, hence, annotated with the disjunction of its concerned product
configurations or the individual configuration involved in a specific product instance, respectively.
Condition 4.2 denotes when two transitions shall be unified due to their matching labels and
conditional states. Finally, Condition 4.3 describes the case where two transitions cannot be
merged, and two distinct conditional transitions shall be created for each product configuration.

Example 4.1.1 (FFSM learned from two product configurations). In Figure 19, we depict a
fragment of an FFSM learned from the two product FSMs shown in Figures 5 and 6. In this
example, the product-specific states Pong Game and Bowling Game were merged into one
conditional state Bowling*Pong where there is one conditional transition with input symbol
Exit for each configuration. The feature constraint (W ∧¬S∧¬B∧¬N) is an example of a
simplified configuration for the product in Figure 5.

Bowling*Pong
(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)

Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(N&¬S&¬B&¬W)]/1
Start Game

[True]

Exit[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(W&¬S&¬B&¬N)]/0
Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/0

Exit[(W&¬S&¬B&¬N)]/1
Exit[(N&¬S&¬B&¬W)]/0

Pause[(N&¬S&¬B&¬W)]/0

Pause[(W&¬S&¬B&¬N)]/1

Figure 19 – Fragment of the FFSM learned for the AGM SPL

Source: Elaborated by the author.
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To guarantee the mapping between the initial states of the products, we start by assuming
the state pair (s0r ,s0u) as one of the landmarks returned by the identifyLandmarks() function
from Algorithm 2. Then, we begin searching for all pairs likely to be equivalent, given the
threshold t and ratio r parameters. To reduce the complexity of feature constraints, we simplify
product configurations by discarding core features (BENAVIDES; SEGURA; RUIZ-CORTÉS,
2010) from their associated formulae.

4.1.3 Including new product behavior into an existing FFSM

Let FFr = ⟨Fr,Λr,Cr,c0r ,Yr,Or,Γr⟩ be an FFSM model learned from a set of product
configurations Λr. If the FFSM model FFr does not include the behavior of a product-specific
FSM Mu = ⟨Su,s0u, Iu,Ou,Du,δu,λu⟩ representing the state machine implemented by a configu-
ration ρu ̸∈ Λr, then a new FFSM model FF that includes the product behavior from ρu can be
learned by comparing and merging ⟨FFr,Mu⟩.

To include a new product behavior into an existing FFSM, there are three required
assumptions: (i) FFr and Mu are complete, deterministic, initially connected, and minimal
models built a priori, (ii) configurations ρu is known in advance, and (iii) the FSM and FFSM
models under learning share a feature model that is known a priori. Thus, we extend the Definition
4.1.1 to describe how an existing family model incorporates novel product behavior described in
terms of a product-specific FSM.

Definition 4.1.2 (FFSM learned from FFr and configuration ρu). An FFSM learned from
⟨FFr,Mu⟩ is a tuple FF = ⟨F,Λ,C,c0,Y,O,Γ⟩ where FFr is a reference FFSM and Mu is the
FSM specifying an updated product pu where

∙ F = Fr ∪{pu} is the set of features in FFr and implemented by pu

∙ Λ = Λr ∪{ρu} are the configurations in FFr and implemented by pu,

∙ C ⊆ (Sr ∪Su ∪ (Sr ×Su))×B(F) is the set of conditional states where

∀(si,φa) ∈Cr,s j ∈ Su | (si,s j) ∈ KPairs · ((si,s j),φa|ρu) ∈C,

∀(si,φa) ∈Cr,@s j ∈ Su | (si,s j) ∈ KPairs · (si,φa) ∈C,

∀s j ∈ Su,@si ∈ Sr | (si,s j) ∈ KPairs · (s j,ρu) ∈C

(4.4)

∙ c0 = ((c0r ,s0u), true) ∈C is the initial conditional state,

∙ Y ⊆ (Yr ∪ Iu)×B(F) is a finite set of conditional input symbols,

∙ O = (Or ∪Ou) is the finite set of output symbols

∙ Γ ⊆C×Y ×O×C is the set of conditional transitions where
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– two transitions ((si,φi),(x,φr),o,(sk,φk)) ∈ Γr and (s j,x) ∈ Du are combined into
the same conditional states if

∀((si,φi),(x,φr),o,(s j,φ j)) ∈ Γr,(sk,x) ∈ Du | λu(s j,x) = o,

δu(s j,x) = sl,

(si,s j),(sk,sl) ∈ KPairs ·

((si,s j),(φ |ρu)),(x,(φr|ρu)),o,((sk,sl),(φ
′′|ρu)) ∈ Γ

(4.5)

– otherwise, for a conditional transition ((si,φi),(x,φr),or,(sk,φk)) ∈ Γr and a transi-
tion (s j,y) ∈ Du, there are two conditional transitions defined as follows:

∀(si,φi) ∈Cr,(s j,x) ∈ Du | λu(s j,y) = ou,

δu(s j,y) = b2 ·

((si,φr),(x,φr),or,(sk,φ
′′
r )) ∈ Γ

((s j,φu),(y,ρu),ou,(sl,φ
′′
u )) ∈ Γ

(4.6)

4.2 Learning by product sampling
Family model learning aims at building featured FSMs with presence conditions indi-

cating feature-specific and family-wide behavior in terms of conditional states and transitions
(DAMASCENO; MOUSAVI; SIMAO, 2019a). Since family models are expected to represent
all product variants within a single artifact (SCHAEFER et al., 2012), the most straightforward
strategy should be exhaustive learning, i.e., where all valid products are analyzed in a brute-force
fashion. However, this is only feasible for small product lines (THÜM et al., 2014a).

For large and complex SPLs, we propose an approach that incorporates a CQ oracle that
chooses an individual subset of products that are to be learned to reduce the costs to efficiently
build precise family models that collectively cover the behavior of a product line. Therefore,
reasonable statements on the product line’s behavior are made from a potentially smaller subset
of valid configurations (THÜM et al., 2014a; VARSHOSAZ et al., 2018),

Product sampling techniques, such as T-wise (PERROUIN et al., 2010; JOHANSEN;
HAUGEN; FLEUREY, 2011), should collectively cover the behavior of an SPL (VARSHOSAZ
et al., 2018). Hence, they should pave the way for family model learning with reasonable
precision and execution costs lower than in exhaustive learning. In Algorithm 3, we depict our
learning strategy that relies on a CQ oracle to find a subset of product configurations to be learned.

Let Csmpl = {ρ1,ρ2, . . . ,ρn} be the list of sampled configurations to be learned using
a technique sample() that samples a subset of valid configurations Csmpl = {ρ1,ρ2, . . . ,ρn}
satisfying arbitrary coverage criteria for a feature model FM. In Algorithm 3, this sampling step
is depicted in Line 2. For learning by sampling, we start building a fresh family model FF1 for
the first pair of product models M1 and M2. This fresh family model FF1 is our initial hypothesis
shown in Line 5.
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As product FSMs may not be available, a model construction step f indFSM() shall find
an FSMs Mi for each configuration ρi ∈ Csmpl . Product-specific FSM models shall be either
found hand-crafted or automatically extracted by means of automata learning (ANGLUIN,
1987; VAANDRAGER, 2017). Additionally, these models must be mapped to their respective
configurations so their conditional states and transitions can be annotated.

Algorithm 3 – Configuration query oracle for learning family models by sampling
1: procedure CONFIGURATIONQUERYORACLE(FM,k, t,r)
2: Csmpl = {ρ1,ρ2, . . . ,ρn}= sample(FM); . List of sampled configurations
3: M1 = f indFSM(ρ1,FM); . Find a product FSM Mi for ρi
4: M2 = f indFSM(ρ2,FM);
5: FF1 = FFSMDi f f (M1,M2,k, t,r); . Learn fresh FFSM
6: for j ∈ {2, . . . ,n−1} do
7: M j+1 = f indFSM(ρ j+1,FM);
8: FFj = FFSMDi f f (FFj−1,M j+1,k, t,r); . Increment family model
9: end for

10: return return(FFn);
11: end procedure

Source: Elaborated by the author.

After learning a fresh FFSM FF1, the algorithm starts in Line 6 an iterative step where
novel product-specific behavior expressed in terms of product state machines M j+1 are included
in partial family models FFj. These family models are called partial as they describe only a
subset of valid product instances. Eventually, product FSMs M j+1 may not exist a priori, and,
hence, the f indFSM() may require automata learning to build product FSMs. At the end of this
process, a family model FFn is learned from a subset of product configurations Csmpl .

Sample-based approaches are known to improve the efficiency of SPL analysis by
eliminating products that may already be covered by other products (THÜM et al., 2014a).
However, they may be incomplete and miss product-specific behaviors (VARSHOSAZ et al.,
2018). Higher-order feature interaction coverage criteria are known by their improved fault
detection capabilities (STEFFENS et al., 2012; PETKE et al., 2013). Thus, for larger values
of T , the T-wise sampling criteria should lead to more precise models. In the next section, we
present a range of experiments to quantify the precision of models learned through exhaustive
analysis and product sampling techniques.

4.3 Empirical evaluation

Several studies have underscored the importance of feature interaction coverage in
product sampling (VARSHOSAZ et al., 2018). Thus, we have designed a set of experiments to
investigate the problem of family model learning and whether feature interaction coverage metrics
can alleviate this task. We discuss the methodology, research questions, subject systems, and
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experiment design of our empirical analysis in the next sections. For the sake of reproducibility
and repeatability, we have made a lab package with a variety of artifacts (e.g., source code,
scripts, FFSMs, FTSs, FSMs, feature models) available online on GitHub at the repository
<https://github.com/damascenodiego/learningFFSM/>.

4.3.1 Research questions

To evaluate the FFSMDiff algorithm, we have defined four RQs to investigate whether: our
approach is effective in learning succinct family models (RQ2.1); the size of the learned family
models influenced by the similarity between product configurations (RQ2.2); our technique is
effective in learning succinct family models compared to hand-crafted models (RQ2.3); our
strategy relying on product sampling is effective in learning precise family models (RQ2.4); In
Table 9, we present our hypotheses about each RQ.

RQ Hypotheses Description

RQ2.1
HRQ2.1

0 The size of learned FFSMs is equal to the total size of the
pairs of products under learning

HRQ2.1
1 The size of learned FFSMs is smaller than the total size

of the pairs of products under learning

RQ2.2
HRQ2.2

0 The size of learned FFSMs is not influenced by configura-
tion similarity

HRQ2.2
1 The size of learned FFSMs is influenced by configuration

similarity

RQ2.3
HRQ2.3

0 The learned FFSMs are larger than hand-crafted models

HRQ2.3
1 The learned FFSMs have at most the same size as hand-

crafted models

RQ2.4
HRQ2.4

0 The FFSMs learned by sampling configurations are less
precise than those learned by exhaustive analysis

HRQ2.4
1 The FFSMs learned by sampling configurations can be as

precise as those learned by exhaustive analysis
Table 9 – Hypotheses - Learning From Difference and By Sampling

Source: Elaborated by the author.

4.3.2 Methodology

According to Thüm et al. (2014a), the effectiveness of family-based analysis shall
be mainly influenced by the number and size of features and the amount of reuse among
configurations, rather than the number of valid configurations. Therefore, for our technique to
qualify as an effective family-based learning technique, we expect to learn succinct FFSMs
where states and transitions are annotated with simplified product configurations.

https://github.com/damascenodiego/learningFFSM/
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By succinct, we mean that the FFSMs learned are smaller than the products under
learning and hand-crafted models, especially if there is high feature sharing. By simplified,
we mean that product configurations are modified by removing core features found using SAT
solvers (BERRE; PARRAIN, 2010).

Furthermore, we also expected that family models learned from product configurations
sampled by T-wise criteria shall collectively cover the behavior of a product line and be at least
as precise as those models recovered using exhaustive learning. Thus, we designed a set of
experiments to measure how succinct and precise are the learned family models.

As a measure of succinctness, we have used the size of the FFSMs learned from product
pairs. We describe size in terms of number of transitions as it is one of the factors that influence
the complexity of model-based techniques (BROY et al., 2005; BAIER; KATOEN, 2008) and
that is used to interpret the language and structure of FSMs (WALKINSHAW; BOGDANOV,
2013). To complement our analysis, we have included the number of states of learned models.

To measure the statistical significance, we have used the Mann-Whitney (MW) test to
check if there was significant difference (p < 0.05) between the sizes of the learned FFSM and
the reference models, i.e., the product pair or the hand-crafted family model. To measure the
scientific significance (KAMPENES et al., 2007; ARCURI; BRIAND, 2011), we have used the
Vargha-Delaney’s (VD) Â effect size (VARGHA; DELANEY, 2000) to assess the probability
of the learned FFSMs being more succinct than the reference model. If Â < 0.5, the learned
FFSM is smaller than the pair of products. If Â = 0.5, they have equivalent sizes. To categorize
the magnitude of the Â effect size, we have used the intervals between Â and 0.5 recommended
by Hess and Kromrey (2004) and implemented in the effsize package (TORCHIANO, 2017):
negligible < 0.147 ≤ small < 0.33 ≤ medium < 0.474 ≤ large.

As a measure of configuration similarity, we have used the Hamming distance between
product configurations with respect to feature selection (AL-HAJJAJI et al., 2017). Thus, we have
analyzed the impact of configuration similarity over the succinctness of learned family models
using the Pearson’s correlation coefficient between the ratio of the size of the learned FFSM to

the total size of the product pairs, on the one hand, and the similarity between configurations, on
the other hand. Thus, the normalized size would range between 0.5, if both product FSMs are
equivalent; and 1.0, otherwise.

As a measure of precision, we have used the model precision proposed by Walkinshaw
and Bogdanov (2013) to calculate how many transitions from all valid product FSMs were
included into models learned by sampling. We have used the attenuation ratio as k = 0.5, the
threshold of most equivalent pairs as t = 0.4, and the ratio for best matches as r = 1.4. To
analyze feature models and calculate configuration similarity, we have used the SAT4J solver
(BERRE; PARRAIN, 2010) and the FeatureIDE framework (THÜM et al., 2014b). To solve the
linear equations that would match states and transitions, we have used the Apache Commons
Mathematics library (Apache, 2016).
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4.3.3 Experiment design

To answer the RQ2.1, we have used the FFSMDiff algorithm to learn family models
from all pairs of product configurations and combine their FSM models into FFSMs, as shown
in Figure 20. Then, we have checked whether there were significant and relevant differences
between the sizes of the learned FFSM, the pair of products under learning.
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Figure 20 – Experiment design

Source: Elaborated by the author.

To answer the RQ2.2, we have used the Pearson’s correlation coefficient between the

normalized size of learned FFSMs and the configuration similarity. To answer the RQ2.3, we
have compared the size of the models learned in the analysis of the RQ2.1 against the size of the
hand-crafted family models.

Let {ρ0,ρ1, . . . ,ρm}⊆B(F) be a set of valid configurations, such that the product derived
from ρi has at most the same number of states as ρi+1, i.e., they are sorted by their FSM size.
Thus, to complement our answer to RQ2.3, we have analyzed the size of family models recovered
by including in the FFSMs resulting from all products

⋃ j−1
i=0 (ρi) with the FSM of the next product

ρ j; and compared against the size of its hand-crafted version.

Finally, to answer the RQ2.4, we have used the FeatureIDE framework (THÜM et al.,
2014b) to generate subsets of valid products satisfying the feature-wise (aka. 1-wise), pair-wise
(aka. 2-wise), 3-wise, 4-wise and all-valid configurations criteria. Particularly, we have used the
Chvatal algorithm for the set-covering problem (CHVATAL, 1979).

The Chvatal algorithm has been adapted by Johansen, Haugen and Fleurey (2011) for
T-wise product sampling that is available in the FeatureIDE workbench (THÜM et al., 2014b).
In Figure 21, we illustrate our experiment for the RQ2.4.

Let Csmpl = {ρ1,ρ2, . . . ,ρm} ⊆ B(F) be a subset of valid configurations generated by
some arbitrary sampling criteria, such that they are sorted by configuration similarity (AL-
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HAJJAJI et al., 2017). For each sampled subset, we iteratively learn a partial FFSM by merging
the FSMs of all configurations

⋃ j−1
i=1 (ρi) with its next configuration ρ j ordered by configuration

similarity, as described in Algorithm 3.
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Figure 21 – Experiment design - Learning FFSMs by sampling

Source: Elaborated by the author.

The process of learning by sampling, shown in Figure 21, works as follows: (1) finding
sets of product configurations satisfying each of the T-wise coverage criteria, (2) learning a fresh
FFSM from the two first product configurations, and (3) increment family models by including
the remainder product behavior, as in Line 6 of the Algorithm 3. At the end of this process, a
partial family model FFt satisfying a given T-wise coverage criteria is obtained.

Once a partial family model FFt satisfying some T-wise coverage is learned, we evaluate
the quality of such model by means of its precision (WALKINSHAW; BOGDANOV, 2013). To
evaluate model precision, we used the FFSMDiff itself and the same t,k,r parameters used for
learning family models to calculate how many transitions from all valid products, including the
ones not analyzed, are expressed in the FFSM learned by sampling.

4.3.4 Experiment artifacts

The artifacts supporting the experiments shown in this chapter are available in a GitHub
repository at the link <https://github.com/damascenodiego/learningFFSM/>. Currently, this
repository contains tags, i.e., splc19 and EMSE, for each of our studies (DAMASCENO;
MOUSAVI; SIMAO, 2019a; DAMASCENO; MOUSAVI; SIMAO, 2020), respectively.

The FFSMDiff repository is organized as a Java project where there is one main package
available, namely uk.le.ac. In this package, there are code artifacts that we have developed to
(i) read/write FSMs; (ii) solve the systems of linear equations to compare the FSMs and FFSMs
under learning; and (iii) merge FSM models and annotate FFSMs. The project is organized using
the Eclipse IDE (ECLIPSE, 2019) and Java v1.8 (ORACLE, 2014).

https://github.com/damascenodiego/learningFFSM/
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To read and write FSM files, we designed the ProductMealy class by extending the
CompactMealy class from LearnLib (RAFFELT; STEFFEN, 2006). Thus, we extended basic op-
erations over FSMs (e.g., reset, transition/output functions) to product FSM models implementing
our IConfigurableFSM interface and product configurations.

Using the Apache Commons Math library (Apache, 2016), we have implemented our
algorithm to find state pairs most likely to be equivalent. It starts mapping the initial states
(s0r ,s0u) as our first landmark. Hence, we start searching for pairs likely to be equivalent, given
the t and r parameters. Based on empirical observations and recommendations by Walkinshaw
and Bogdanov (2013), we have set the attenuation ratio as k = 0.5, the threshold of most
equivalent pairs as t = 0.4, and the ratio for best matches as r = 1.4.

To represent FFSMs, we designed the FeaturedMealy class by extending the FastNFA
class, one of the LearnLib building blocks, to represent non-deterministic models. We opted for
this representation because, if we ignore the presence conditions, an FFSMs can be modeled as
a non-deterministic FSM. To represent conditional states/transitions, we designed the classes
ConditionalState and ConditionalTransition with collections of Node objects. The Node
class is a building block from FeatureIDE to represent feature constraints.

In the folder lib, we have some of the libraries used in our project. These include
FeatureIDE (THÜM et al., 2014b), and Apache Commons Math (Apache, 2016). Other li-
braries (e.g., LearnLib and AutomataLib (RAFFELT; STEFFEN, 2006)) are by the Apache
Maven. The file learnFFSM.jar is a compiled version of the FFSMDiff algorithm.

In the folder FFSM_diff/Benchmark_SPL/, we have added the subject systems and
their respective models (i.e., FSMs, FFSMs), feature models, visual representations and test
scripts. In the folder FFSM_diff/Benchmark_SPL/exp_splc2019, there is an RStudio project
(RSTUDIO, 2019) with the results obtained in our first study (DAMASCENO; MOUSAVI;
SIMAO, 2019a). To replicate this set of experiments, you shall use the test scripts run_‹ID›.py
and run_‹ID›_pairs.py in folder Benchmark_SPL/exp_splc2019/scripts.

In the folder FFSM_diff/Benchmark_SPL/exp_emse, we have the plots and tabulated
results from our extended analysis (DAMASCENO; MOUSAVI; SIMAO, 2020). The raw
results are found in the file FFSM_diff/Benchmark_SPL/wise2learn.zip. The experimen-
tal bash scripts are named as emse_*.py. There is an RStudio (RSTUDIO, 2019) project at
FFSM_diff/Benchmark_SPL/exp_emse/learningFFSMs.Rproj and an R script for statisti-
cal analysis at FFSM_diff/Benchmark_SPL/exp_emse/script.r.

4.3.5 Subject systems

In order to evaluate our hypotheses, we used 105 Mealy machines derived from six
SPLs from previous studies (DAMASCENO; MOUSAVI; SIMAO, 2019a; DEVROEY et al.,
2015). Although these case studies are abstract representations of SPLs, they comprise many



86 Chapter 4. Family model learning for product lines

non-trivial aspects, such as infinite behavior and states with similar or identical behavior in
different products (SAMIH et al., 2014; DAMASCENO; MOUSAVI; SIMAO, 2019a). In Table
10, we present the SPLs in terms of numbers of features and valid configurations from the feature
model, and states and transitions in the family model.

SPL Feature model Family model
ID Name Features Valid conf. States Transitions

AGM Arcade Game Maker 13 6 6 35
VM Vending Machine 9 20 14 197
WS Wiper System 8 8 13 112

AEROUC5 Aero UC5 7 9 25 450
CPTERMINAL Card Payment 13 30 11 176

MINEPUMP Minepump 9 32 25 575
Table 10 – Description of the SPLs under learning - Feature and family models

Source: Elaborated by the author.

All the FSMs used in this study were derived from FFSMs using the model derivation
operator ∆ρ (FRAGAL; SIMAO; MOUSAVI, 2017). Thus, we had reference FFSMs to assess
the learned models, i.e.„ the hand-crafted product-line FFSMs, the intermediate FFSMs. Each of
the SPLs is described in the following sections.

The Arcade Game Maker SPL

The Arcade Game Maker (AGM) SPL is a well-known pedagogical example that de-
scribes arcade game machines with different game rules. In our version of the AGM SPL
(FRAGAL; SIMAO; MOUSAVI, 2017), we have support to three alternative games and one
optional feature to Save the game. The FSMs derived from the AGM FFSM have at least three
states for the game modes start, running and paused. If Save feature is included, a fourth state is
added. The feature model for the AGM SPL has been shown in Figure 7.

The Vending Machine SPL

The Vending Machine (VM) is an abstract representation of a product-line that we
hand-crafted (DAMASCENO; MOUSAVI; SIMAO, 2019a) as FFSM/FSM models inspired by
featured transition systems from a collection of illustrative examples of SPLs (CLASSEN, 2010).
In Figure 22, we depict the feature model for the VM SPL.

In the VM SPL, product instances shall feature at most three beverages (i.e., Coffee -
COF, Tea - TEA, and Cappuccino - CAP), support one currency (i.e., Dollar - DOL or Euro - EUR)
and include one optional Ringtone - TON that can be played when a beverage is completed. The
VM SPL constitutes an interesting case as it resulted on FSMs with distinct languages. Among
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Figure 22 – The VM feature model

Source: Elaborated by the author.

the FSMs derived, we highlight two main differences: the addition of states for each of beverage
and changes in the language of outgoing transitions from the initial state for each currency.

The Wiper System SPL

The Wiper System (WS) is another abstract behavioral representation of SPL hand-
crafted (DAMASCENO; MOUSAVI; SIMAO, 2019a) based on a product-line from an academic
catalog of SPLs (CLASSEN, 2010). In Figure 23, we depict the feature model of the WS SPL.

Figure 23 – The WS feature model

Source: Elaborated by the author.

Our WS SPL has two subsystems: the Sensor to detect rain and the Wiper itself; avail-
able in two qualities, namely, high and low; and one optional feature for permanent movement
PermanentWiper. A high-quality sensor sHigh can discriminate between heavy and light rain,
whereas a low-quality sensor sLow can only distinguish between rain and no rain. Similarly, the
wHigh and wLow quality wipers can operate at two and one speeds, respectively. These features
lead to significant changes in the structure and language of its derived FSMs.

The Aero UC5 SPL

The Aero UC5 (AEROUC5) model has been originally introduced by Samih et al.

(2014) as a set of extended Markov models designed by engineers. The AEROUC5 is an
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industrial situational awareness system for helicopters flying in degraded visual environments.
The AEROUC5 feature model has been originally designed with 25 features and more than 5
million valid configurations (VIBeS, 2016a).

By inspecting the actual family model that was given as a featured transition system
(CLASSEN et al., 2013), we found that only a few features were, in fact, annotating the model.
Thus, we have opted to discard those features that did not have impact on the behavioral model.
Our adapted version of this feature model contains four features related to (i) display real object
or (ii) 3D conformal visual cues on a head-tracked Helmet, and (iii) marking intended lading
positions or (iv) obstacles on the ground using an Obstacle Warning System. In Figure 24, we
show our version for the AEROUC5 SPL.

Figure 24 – The Aero UC5 feature model

Source: Elaborated by the author.

To instantiate complete FSMs from the FTS, we have used the VIBeS tool to derive
projections and identify the transitions valid for all valid configurations. For each valid config-
urations, we have created FSM transitions with output as 1 when a state included some FTS
transition. For the missing transitions, we have created self-loop transitions returning 0. This
family model is intended to be a more realistic subject as it has been designed by engineers and
is one of our largest model in terms of number of states and transitions.

The Card Payment Terminal SPL

The Card Payment Terminal (CPTERMINAL) SPL is another model originally designed
as an FTS (CLASSEN et al., 2013). In Figure 25, we depict the feature model for the Card
Payment Terminal product line.

This product line has been defined by a software engineer based on EMV and PCI
norms and its family model describes the behavior of one terminal that accepts card payment
with DirectDebit and/or CreditCard. It supports a card owner authentication method (i.e.,
Signature and optionally PIN code), and synchronous (Online) or asynchronous (Offline)
connection to the payment service (VIBeS, 2016b). To derive FSMs, we have used the same
approach applied to the AEROUC5 SPL.
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Figure 25 – The Card Payment Terminal feature model

Source: Elaborated by the author.

The Minepump SPL

The Minepump (MINEPUMP) product line has been presented by Classen et al. (2013).
The purpose of this system is to keep a mine shaft clear of water while avoiding the danger of
methane related explosions. In Figure 26, we show the feature model for the Minepump SPL.

Figure 26 – The Minepump feature model

Source: Elaborated by the author.

To monitor the mine shaft, it uses the WaterRegulator and MethaneDetect features.
The system is activated once the water level reaches a preset threshold, but only if the methane
level is below a critical limit. Similarly to the AEROUC5 and CPTERMINAL SPLs, the product
FSMs for the Minepump SPL were derived from an FTS model (VIBeS, 2016c).

4.4 Analysis of results
In this section, we discuss the main results of our experiments in terms of the RQs and

Hypotheses shown in Table 9. For the sake of space, we will only plot and highlight the main
findings of our experiments. The full set of plots and tabulate results are available on GitHub at
the repository <https://github.com/damascenodiego/learningFFSM> .

https://github.com/damascenodiego/learningFFSM
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4.4.1 Size of learned family models vs. products under learning

Regarding the succinctness of the learned FFSMs, we observed that on average all
learned FFSMs presented fewer transitions than their respective pairs of products under learning.
In Figure 27, we show boxplots for the sizes of the learned FFSMs and the total size of the pairs
of products under learning in terms of number of transitions. Dashed lines indicate the number
of transitions in the original hand-crafted model.
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Figure 27 – Number of transitions in the learned FFSMs and pairs of products

Source: Elaborated by the author.

In terms of number of states, we also found that the learned FFSMs had fewer states than
their pairs of products under learning. Figure 28 shows the boxplots for the numbers of states in
the learned FFSMs and the total number of states in the pair of products under learning. Dashed
lines indicate the number of states in the original hand-crafted model.

To assess the statistical difference and significance of our results, we ran the MW test
and VD’s Â effect size to check the significance (p < 0.05) and magnitude of the difference
between the sizes of the learned FFSMs and the pairs of products under learning. In Table 11, we
present the p-values and effect sizes comparing the sizes of our learned family models against
the pairs of product under learning in terms of states and transitions.
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Figure 28 – Number of states in the learned FFSMs and pairs of products

Source: Elaborated by the author.

# of Test AGM VM WS CPTERMINAL MINEPUMP AEROUC5

States
MW 1.07E-08 9.21E-61 2.92E-09 2.07E-160 1.06E-171 6.77E-19
VD 0.000 0.037 0.050 0.000 0.005 0.000

Transitions
MW 1.73E-06 6.44E-31 3.55E-06 2.30E-135 1.73E-101 2.14E-16
VD 0.075 0.174 0.146 0.032 0.120 0.000

Table 11 – Mann-Whitney test and Vargha-Delaney’s effect size: learned FFSM vs. Product pair

Source: Elaborated by the author.

As indicated by Figures 27 and 28, as well as by Table 11, there were statistically
significant differences between the sizes of the learned FFSMs and the pair of products under
learning. For the effect sizes, we also found that the differences had a large magnitude. Thus,
our results support the hypothesis HRQ2.1

1 that the sizes of learned FFSMs are at most equal to
the total size of products under learning.

4.4.2 Size of learned family models vs. configuration similarity

In addition to analyzing the size of FFSMs learned against the products under learning,
we analyzed the relationship between learned family model size and configuration similarity
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using the Pearson’s correlation coefficient. In Figure 29, we show a set of scatter plots for the
configuration similarity degree against the size of the learned FFSMs for all pairs of products of
each SPL.

R = − 0.84 , p = 2.3e-06

R = − 0.65 , p = 1.1e-06

R = − 0.76 , p < 2.2e-16

R = − 0.52 , p < 2.2e-16

R = − 0.79 , p = 2.9e-07

R = − 0.73 , p < 2.2e-16
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Figure 29 – Scatter plots for the relationship between the normalized size of the learned FFSM and
configuration similarity

Source: Elaborated by the author.

A configuration similarity equals to 1.0 means that both products have the same feature
configuration. A ratio between the size of the learned FFSM and the total size of products equals
to 0.5 means that the products analyzed implement equivalent behavior; otherwise they have
some variability expressed by distinct transitions.

By analyzing the Pearson correlation coefficient, we found strong negative correlations
between FFSM size and configuration similarity for the VM, WS, AEROUC5 and MINEPUMP
product lines; very strong negative correlation for the AGM product line; and moderate negative
correlation for the CPTERMINAL. These results indicate that FFSMs learned from products
implementing similar configurations were more succinct than those built from products imple-
menting fewer common features. Thus, our results support the hypothesis HRQ2.2

1 that the size of
the learned FFSMs is influenced by configuration similarity.

4.4.3 Size of learned family models vs. hand-crafted models

To evaluate the succinctness of the learned FFSMs, we also compared the size of hand-
crafted models against the FFSMs learned from pairs of products. In Figures 27 and 28, we show
the boxplot for size of learned FFSMs from product pairs. A dashed line indicates the size of the
original hand-crafted FFSM.
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To compare the sizes of the hand-crafted models and the FFSMs learned from product
pairs, we used the Mann-Whitney test and Â effect size. Table 12 shows the results for the
Mann-Whitney test and effect size comparing the size of the learned FFSMs against the size of
hand-crafted models.

# of Test AGM VM WS CPTERMINAL MINEPUMP AEROUC5

States
MW 1.16E-09 1.35E-09 1.80E-12 3.38E-76 1.54E-199 6.77E-19
VD 0 0.35 0 0.22 0 0

Transitions
MW 3.06E-09 1.48E-54 2.83E-12 1.50E-175 1.14E-198 1.51E-10
VD 0 0.09 0 0 0 0.13

Table 12 – Mann-Whitney test and Vargha-Delaney’s effect size: learned FFSM vs. Hand-crafted model

Source: Elaborated by the author.

By analyzing the results of the MW test, we found statistically significant differences
(p < 0.01) between the sizes of FFSMs learned from all SPLs. The VD effect sizes indicated dif-
ferences of large magnitude where FFSMs learned from product pairs included fewer transitions
than their hand-crafted versions. These findings persisted for the number of states, except for the
VM SPL where we found a small magnitude on the difference between the number of states of
the FFSM models learned from product pairs. Thus, our results support the hypothesis HRQ2.3

1

that learned FFSMs have at most the same size as hand-crafted FFSMs.

These results corroborate with our findings (DAMASCENO; MOUSAVI; SIMAO, 2019a)
where two FFSMs were recovered with fewer states than their original models, i.e., AGM and WS.
We inspected the learned and hand-crafted FFSMs models and found that two states presented
similar outgoing transitions and, hence, they could be merged. In Figure 30, we show the size of
the learned FFSMs from all products of three of our SPLs.
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Figure 30 – Size of the recovered FFSMs

Source: Damasceno, Mousavi and Simao (2019a).

As shown in Table 10, the hand-crafted FFSMs for the AGM and WS SPLs presented 6
and 13 conditional states, respectively. In Damasceno, Mousavi and Simao (2019a), the FFSMs
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learned from AGM and WS, in their turn, included 4 and 11 states, respectively. Moreover, we
found that the FFSMs learned from the AGM SPL coincided with the alternative representation
reported by Fragal (2017) with fewer states (DAMASCENO; MOUSAVI; SIMAO, 2019a). In
this alternative representation shown in Figure 31, all three conditional states are composed into
one state annotated with the disjunction of the alternative features.

Save[(B||N)&&S]/1

Exit[B]/0

Start/1
Save[W&&S]/1

Pause/1
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Exit[N]/1
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[B| |N| |W]Star t  Game

Figure 31 – Alternative FFSM for the AGM SPL with fewer states

Source: Fragal (2017).

The FFSMs hand-crafted and learned for the VM SPL presented the same size. In this
particular case, the order that the products have been analyzed led to an FFSMs learned with
the same size of its hand-crafted version. These findings indicate that selecting “good" product
configurations could help to learn more succinct FFSMs. Thus, product sampling (VARSHOSAZ
et al., 2018) could potentially improve the overall behavior incorporated into an existing FFSM,
as we see in the next section.

4.4.4 Precision of family models learned by sampling

For each T ∈ {1,2,3,4}, we have used the T-wise sampling criteria to generate subsets
of valid product configurations and learn FFSM models by sampling. To evaluate the precision
of learning by sampling, we used the all-valid configurations criteria to derive all products FSMs
and build reference FFSMs for each SPL. In Table 13, we depict the sizes of the subsets of
products generated by each configuration sampling criteria.

SPL
Size of the sampled subset generated by T-wise

Feature-wise Pair-wise 3-wise 4-wise All-valid
AGM 3 6 6 6 6
VM 2 6 13 19 20
WS 2 5 8 8 8

AEROUC5 3 6 9 9 9
CPTERMINAL 3 8 16 24 30

MINEPUMP 3 7 13 24 32
Table 13 – Number of configurations in the subsets generated by each criteria

Source: Elaborated by the author.

To evaluate the precision of the models learned by sampling, we have used the FFSMDiff

to measure the proportion of transitions from the analyzed models (i.e., learned by sampling) that
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are also in the reference models (i.e., individual FSMs of all valid products). Thus, a precision
equals to 1 indicates that all transitions from all valid products are included in the FFSM learned
by sampling.to In Figure 32, we show the precision of the FFSM learned from each sampling
criteria and the full set of all valid products.
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Figure 32 – Model precision by sampling criteria

Source: Elaborated by the author.

As our results indicate, model precision turned out to be larger for higher values of T .
For most of the product lines, excluding the AGM, we found a significant difference between the
models learned by feature-wise sampling and all-valid configurations, i.e., exhaustive analysis. By
comparing exhaustive analysis against feature-wise sampling, we found effect sizes categorized
as medium to large with the exhaustive criteria reaching higher precision.

Higher interaction strengths are known for their improved fault detection capabilities
(STEFFENS et al., 2012; PETKE et al., 2013). Similarly, our results corroborate to these findings
as they indicate that family models learned by 3- and 4-wise sampling tend to be more precise
than those built by feature-wise and pair-wise sampling.

As shown in Table 13, the 3- and 4-wise sampling criteria generated the same number of
configurations as the exhaustive criteria for the AGM, WS and AEROUC5 product lines. Thus,
similar precision levels should be expected. The results for the MW and VD’s tests corroborate
these findings as they indicated no significant difference between the precision of models learned
by 3-wise, 4-wise and all-valid sampling criteria.

For the VM, CPTERMINAL and MINEPUMP product lines, we found that models
learned by 3-wise and 4-wise sampling reached precision levels similar to those learned by using
the exhaustive criteria. For these product lines, we found either no significant differences or
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effect sizes categorized as negligible for small between the models learned by the 3-wise, 4-wise
and all-valid sampling criteria. These findings indicate that product sampling can be helpful
at reducing the costs for recovering family models from product families without analyzing
all-valid products.

For the AEROUC5 and MINEPUMP product lines, we found that FFSMs learned by
exhaustive analysis did not reach precision levels equal to 1. We associate this to a possibly
large number of state pairs with similar scores returned by the identifyLandmarks() function.
Thereafter, multiple mappings between state pairs have been found by our algorithm and the
selected pairs deemed transitions as removed and affected precision. These results support our
hypothesis HRQ2.4

1 that FFSMs learned by sampling can be at least as precise as those learned by
running exhaustive analysis.

4.5 Threats to validity

In this section, we discuss the threats to validity and limitations for the experiments
shown in this chapter.

Conclusion validity: These threats concern to the relationship between treatment and
outcome of our investigation. To ensure the reliability of our measures and treatment imple-
mentation, we have a setup in place based on widely used tools for state-machine learning
(RAFFELT; STEFFEN, 2006), SAT solving (BERRE; PARRAIN, 2010), and feature-oriented
software development and analysis for SPLs (THÜM et al., 2014b).

External validity: These concerns relate to the generalization of our results to industrial
subjects. Our results have been obtained using six product lines, where one of them has been
inspired by a real system (SAMIH et al., 2014); the small number of real product lines poses
a threat to external validity. Another variable that will form a threat to external validity is the
behavioral variability inherent to the valid products of our subject systems. For some of our
subjects, the behavioral difference between products has made the exhaustive analysis the only
criteria able to recover family models fully precise.

Internal validity: These concerns relate to the phenomena that can affect the causal
relationship between the treatment and outcomes. One variable that will form a threat to internal
validity is the order of incorporating product FSMs into product line FFSMs. Originally, we
have considered one single order for recovering FFSMs by incrementally incorporating products,
i.e., products sorted by their FSM size (DAMASCENO; MOUSAVI; SIMAO, 2019a). In this
case, product configuration prioritization (HENARD et al., 2014) could be employed. However,
the impact of prioritization techniques in family model learning is out of the scope of this PhD
Thesis.

Construct validity: These are concerned with the ability to draw correct conclusions
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about the treatment and outcomes. Two factors that will form threats to construct validity
are the nature of the hand-crafted FFSMs and the subsets sampled by T-wise criteria. Highly
specialized engineers are more likely to come up with better subsets of products configurations
and more compact models than professionals with less experience. In addition to that, T-wise
criteria may still sample large subsets, compared to the set of all-valid products. In these cases,
domain-specific expertise may be useful to optimize family model learning.

4.6 Discussion

What are the implications for practitioners? While exhaustive learning may be suit-
able for small product lines, for large SPLs, it becomes impractical. Our sampling-based learning
technique paves the way for efficient and effective reverse engineering techniques for software
product lines. Additionally, we believe that it can complement automata learning (IRFAN;
ORIAT; GROZ, 2013; STEVENSON; CORDY, 2014; AICHERNIG et al., 2018) and reverse
engineering feature models (HASLINGER; LOPEZ-HERREJON; EGYED, 2011; RYSSEL;
PLOENNIGS; KABITZSCH, 2011; AL-MSIE’DEEN et al., 2014).

What types of systems may it work/not work? In product sampling, there is an as-
sumption that sampled products shall collectively cover the behavior of product families. Thus,
if there is no such behavioral overlap, then products learned by sampling may never be precise
enough. Hence, a possible alternative could be the application of an iterative CQ oracle for testing

if a partial family model already includes the states and transitions of a given SUL and learning

any unseen behavior.

How are the different notions of variability represented? Currently, our approach
annotates state and transitions using the disjunction of simplified configurations. As a result
of this design decision, the representation of feature constraints is limited to a unique format
(i.e., OR with ANDs). To overcome this limitation, more sophisticated presence-condition
simplification techniques (VON RHEIN et al., 2015) could be used to reduce the complexity
of feature constraints. Other possible solutions are the usage of feature model refactoring and
specialization (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010) to come up with the constrains
for conditional state and transitions.

4.7 Final remarks

Explicit models are important assets to the analysis and development of high-quality
systems. They can help developers on program comprehension, software refactoring, model
checking, and model-based testing. However, in the lack of proper maintenance, software models
often become outdated, incomplete, or even deprecated. The problem of outdated and deprecated
models can arise in the setting of SPLs and hamper the application of family-based analysis.
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Family-based analysis operates on a single artifact, referred to as a family model, anno-
tated with feature constraints to express variability in terms of states and transitions specific to
product configurations. Albeit reasonably efficient, family-based analysis is challenging because
creation and maintenance of family models tend to be time consuming and error-prone, espe-
cially if there are crosscutting features. To tackle this issue, we have introduced FFSMDiff , an
automated technique to learn succinct FFSMs from sets of product FSMs.

Our technique incorporates variability to compare and merge FSMs and annotate states
and transitions with feature constraints. Our technique copes with two tasks: (i) learning fresh
FFSMs from two product FSMs, and (ii) including novel product behavior expressed as an FSM
into an existing FFSM. We have built upon our expertise on the FFSMDiff algorithm product
sampling techniques to reduce the cost of exhaustive learning and obtain accurate family models.

To evaluate our technique, we used 105 Mealy machines derived from six SPLs from
previous studies and measured the effectiveness of our algorithm in terms of the size of the
learned FFSMs and the amount of feature reuse. Our results have supported the hypothesis that
families of FSMs can be effectively merged into succinct FFSMs, especially if there is high
feature reuse among products. Moreover, we have found that family models learned by product
sampling can be as precise as those learned by exhaustive analysis. These results pave the way
for more efficient family model recovery from product lines. Therefore, this study can pave the
way to several family-based analysis techniques without family models specified a priori, such
as SPL re-engineering (FENSKE; THüM; SAAKE, 2013), SPL evolution (MARQUES et al.,
2019), traceability analysis (VALE et al., 2017), and model-based regression testing (RUNESON;
ENGSTRöM, 2012).

The FFSMDiff algorithm has been originally published as a full paper at the 23rd Interna-
tional Systems and Software Product Line Conference (SPLC) (DAMASCENO; MOUSAVI;
SIMAO, 2019a). An extended version of this paper has been submitted for a Special Issue on
"Configurable Systems" in the Journal of Empirical Software Engineering (DAMASCENO;
MOUSAVI; SIMAO, 2020), which is currently at the rebuttal phase.

The ideas presented in this chapter have been designed and implemented during a
research visit at the University of Leicester (UK) under the supervision of prof. Dr. Mohmammad
Reza Mousavi and prof. Dr. Adenilso Simao from January/2019 to December/2019. The artifacts
used in this study are available in a lab package that has been open-sourced on GitHub at the
repository <https://github.com/damascenodiego/learningFFSM/>.

https://github.com/damascenodiego/learningFFSM/
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CHAPTER

5
CONCLUSION

Software models are key assets in a range of activities in the software development life
cycle. Nevertheless, as modifications take place in coding artifacts, specification models often
become outdated once they lack proper maintenance. Hence, this phenomenon may hinder the
application of model-based software engineering principles, such as model-based testing, model
checking, and program comprehension.

This PhD Thesis improves upon the state of the art of model-based software engineering
by introducing theoretical and experimental contributions to address automata model learning
for evolving systems. Thus, it introduces and empirically evaluates solutions to the research
problem retaken below:

Research Problem

Given an evolving system that has changed over time (in space) where its versioning scheme
(variability model) is known, but version-specific FSMs (family models) are unavailable

or outdated, how can we efficiently and effectively learn (family-based) state machines

specifying its behavior?

The remainder of this chapter is organized as follows: The contributions to address the
research problem of this PhD Thesis and research collaborations are revisited in Section 5.1.
In Section 5.2, we present a list of works related to my PhD Thesis. In Section 5.3, we discuss
the limitations of this PhD Thesis. Finally, in Section 5.4, we conclude this work enumerating a
non-exhaustive list of future works and possible extensions to this PhD Thesis.
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5.1 Contributions of this PhD Thesis

The overall contribution of this PhD Thesis is an extensive investigation of the problem
of automata model learning in the setting of evolving systems that can incorporate software modi-
fications over time and software variability in space. Particularly, we have addressed our research
problem following three main branches refered to as Learning to reuse, Learning from
difference, and Learning by sampling, respectively. We briefly summarize the branches
of contributions of this PhD Thesis as follows:

1. Learning to Reuse: We have introduced the partial-Dynamic L*M algorithm, an adaptive
technique that mitigates the cost for re-learning FSMs from evolving systems. We have
empirically shown that our technique is less sensitive to the side-effects of redundant

and deprecated sequences and more efficient than state-of-the art adaptive learning. This
algorithm suports the efficient model-based analysis of systems that evolve over time.
The partial-Dynamic L*M algorithm has been published as a regular paper at the 15th
International Conference on integrated Formal Methods (iFM) held in Bergen, Norway
(DAMASCENO; MOUSAVI; SIMAO, 2019b). Furthermore, an extended abstract present-
ing an overview and indicating future works for this PhD Thesis has been published and
presented in the PhD Symposium of the iFM 2019 (DAMASCENO, 2019).

2. Learning from Difference: We have designed the FFSMDiff algorithm, an automated
technique to learn family models by comparing, annotating, and merging product-specific
FSM models. Using abstract representations of product lines from academic benchmarks,
we have empirically shown that our algorithm can effectively combine families of product
FSMs into succinct family models given as FFSMs, especially if there is high feature reuse
among products. Therefore, our technique has been able to learn succinct family models
out of product-specific FSMs efficiently, and include novel product-specific behavior into
existing family models. A full paper discussing this contribution has been published at the
23rd International Systems and Software Product Line Conference held in Paris, France
(DAMASCENO; MOUSAVI; SIMAO, 2019a).

3. Learning by Sampling: We have extended our understanding of FFSMDiff by incorporat-
ing product sampling into the process of family model learning. Using 105 FSMs derived
from six product lines of academic benchmarks, we have shown that product sampling
can lead to models as precise as those learned by exhaustive analysis. These results have
been submitted as a journal paper for a Special Issue on "Configurable Systems" in the
Empirical Software Engineering Journal (DAMASCENO; MOUSAVI; SIMAO, 2020).
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Other publications

Apart from the three published papers (DAMASCENO; MOUSAVI; SIMAO, 2019b;
DAMASCENO, 2019; DAMASCENO; MOUSAVI; SIMAO, 2019a) and the journal manuscript
submitted to the Empirical Software Engineering Journal (DAMASCENO; MOUSAVI; SIMAO,
2020), the author of this PhD Thesis has co-authored other five papers in collaboration with
researchers from the University of Leicester, where he has spent one year and two months as
a visiting PhD student researcher; and the Federal University of Pará, where he has formely
attended an Institutional Scientific Initiation Scholarship Program (PIBIC) and earned his Bsc
degree in Computer Science. The five papers are listed below with brief descriptions of their
content.

4. Trusted Autonomous Vehicles: an Interactive Exhibit This conference paper reports a
collaboration with the University of Leicester on the design of an interactive exhibit to
illustrate basic technologies employed in autonomous vehicles and principles to ensure
their quality (Araujo et al., 2019). The authors also report on a science outreach involving
this exhibit at the Royal Society Summer Science Exhibition 2019, held in London, UK.

5. Similarity testing for role-based access control systems: This manuscript is a journal

paper resulting from my MSc dissertation. In this paper, Damasceno, Masiero and Simao
(2018) have introduced and empirically evaluated a similarity-based test prioritization
criteria for Role-Based Access Control (RBAC) systems.

6. Data Analysis of Multiplex Sequencing at SOLiD Platform: This journal paper is a
publication in collaboration with my former PIBIC supervisors from the Federal University
of Pará. In this paper, Lobato et al. (2018) have introduced a probabilistic model to analyze
and characterize the reliability of DNA sequencing datasets.

7. A parallel algorithm for test prioritization based on similarity using OpenMPI: This
short paper reports a small experiment comparing test prioritization algorithms imple-
mented using OpenMPI (DAMASCENO; SOUZA; SIMAO, 2017). These experiments
have been performed in a course of Parallel Programming that I attended during my PhD.

8. Evaluating Test Characteristics and Effectiveness of FSM-based Testing Methods on
RBAC Systems: This conference paper is another result of my MSc dissertation. In this
paper, Damasceno, Masiero and Simao (2016) have analyzed the characteristics test suites
generated by FSM-based testing methods for RBAC policies specified as FSM models.
This work has earned the 3rd Best Paper Award at the 30th Brazilian Symposium on
Software Engineering 2016.
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5.2 Related work

In this section, we discuss the related works and how this PhD Thesis can be helpful in
their respective contexts. Studies related to this PhD Thesis are in the fields of state-machine
model learning, product sampling, family-based analysis, comparison of state models, reverse
engineering feature models, and product line evolution.

State-machine learning

State-machine learning, also known as automata learning (ANGLUIN, 1987), has been a
popular technique in software analysis and testing. State-machine learning algorithms have been
harnessed for black-box model checking (PELED; VARDI; YANNAKAKIS, 1999), analyzing
network protocols (AARTS et al., 2012; FITERĂU-BROŞTEAN; HOWAR, 2017), software
evolution (HUNGAR; NIESE; STEFFEN, 2003; DE RUITER; POLL, 2015), automatic test
generation (RAFFELT et al., 2009), and generalization of failure models (CHAPMAN et al.,
2015; KUNZE et al., 2016). For an overview of model learning, we refer the interested reader to
Irfan, Oriat and Groz (2013), Stevenson and Cordy (2014), and Aichernig et al. (2018).

The problem of learning models from evolving systems becomes more complex as it
has to cope with products that may have their own models, requirements and code. This PhD
Thesis improves upon the state of the art by supporting the tasks of learning models from systems
evolving over time and incorporating variability in space.

Product sampling for software product lines

Due to the number of valid configurations that usually grows exponentially with the
number of features, the exhaustive analysis of SPLs is impractical (THÜM et al., 2014a). To
alleviate this issue, sampling techniques have been used to select products systematically covering
the behavior of SPLs and hence, reveal faults in other products (PERROUIN et al., 2010).

According to Varshosaz et al. (2018), product sampling techniques often rely on feature
models (KANG et al., 1990) and SAT solvers (BERRE; PARRAIN, 2010) to distinguish valid
from invalid configurations (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). In order to sample
product configurations, techniques can use meta-heuristics (e.g., genetic algorithms (ENSAN;
BAGHERI; GAŠEVIĆ, 2012; LOPEZ-HERREJON et al., 2014)), coverage criteria (e.g., T-wise
(PERROUIN et al., 2010)), manual selection and semi-automatic selection.

In this PhD Thesis, we employed product sampling to generate subsets of valid config-
urations satisfying the T-wise coverage criteria. We used the Chvatal algorithm (CHVATAL,
1979) implemented in the FeatureIDE workbench (THÜM et al., 2014b) for product sampling.
This algorithm has been adapted by Johansen, Haugen and Fleurey (2011) to select subsets of
products covering T-wise feature combinations.
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Family-based analysis of SPLs

Family-based analysis operates on domain artifacts and incorporates knowledge about
valid feature combinations, given a feature model. Thus, not every individual product has to be
analyzed (THÜM et al., 2014a), as opposed to traditional analysis strategies that are influenced
by the number of valid feature combinations (BRABRAND et al., 2012). To achieve this goal,
family-based analysis techniques rely on family models. For an overview of techniques for
family-model analysis, testing and modeling, we refer the reader to recent surveys such as Thüm
et al. (2014a), Benduhn et al. (2015), and Beohar, Varshosaz and Mousavi (2016).

Family models have been exploited as a theoretical foundation to perform efficient
model-based testing of SPLs (ATLEE et al., 2015; BEOHAR; MOUSAVI, 2016) and family
model checking (SABOURI; KHOSRAVI, 2013; TER BEEK; DE VINK; WILLEMSE, 2017).
Moreover, they have been used to automate the generation of specifications for individual
products (ASIRELLI et al., 2012), to efficiently validate families of products (FRAGAL; SIMAO;
MOUSAVI, 2017), and to describe fine-grained differences among product variants (SCHAEFER
et al., 2010).

The contributions of this PhD Thesis are complementary to the techniques aforemen-
tioned as it can give insights about how to optimize family model learning to large SPLs.
Our techniques have been discussed in terms of FFSMs, but they can be extended to other
family-based notations (CLASSEN et al., 2013; BEOHAR; MOUSAVI, 2014).

Comparison of state-based models

The comparison of FSMs is important for software engineering tasks (WALKINSHAW;
BOGDANOV, 2013) such as conformance testing (BROY et al., 2005), and performance analysis
of state-machine learning techniques (ANGLUIN, 1987; VAANDRAGER, 2017). In this PhD
Thesis, we aimed at finding the differences between two models (i.e., FSM-FSM, FFSM-FSM)
and labeling commonalities and variability with feature constraints. Studies related to ours have
been conducted by Walkinshaw and Bogdanov (2013) and Nejati et al. (2012).

Walkinshaw and Bogdanov (2013) have designed and evaluated two approaches to
compute the precise difference between labeled transition systems (LTS) in terms of their
language and structure. To compare the language of two state-based models, they have proposed
an approach based on the proportion of test sequences (CHOW, 1978; VASILEVSKII, 1973)
that are classified in the same way by two models Mr and Mu. Thus, performance metrics (e.g.,
precision, recall, and F-measure) can be used to compare the languages of LTS models. A major
issue in comparing the language of FSMs is that some minor differences may mask structural
similarities. To address this issue, the authors have modeled the problem of structural comparison
of FSMs as a system of linear equations. These two approaches for structural and language
similarity are complementary as two models may have similar state transition structure, but
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completely different languages, or vice-versa.

Nejati et al. (2012) presented an approach for matching and merging Statecharts (HAREL,
1987). Their approach relies on two operators for matching and merging transitions. The latter
uses static and behavioral properties to match state pairs. The former produces a combined model
in which variant behaviors are parameterized using guards on their transitions where temporal
properties are preserved. The authors have developed a tool that implements both Match and
Merge operators and allows their seamless application. Finally, they have shown that that relying
on both operators produces higher precision than relying on them independently.

In this PhD Thesis, we introduced an approach for comparing product FSMs and building
family models inspired by Walkinshaw and Bogdanov (2013). To achieve this, we extended their
approach by annotating common and distinct states with feature constraints and evaluating how
product sampling can reduce the costs for recovering family models. Product-lines may have
an exponential number of valid configurations. Thus, sampling techniques can help reduce the
effort required to recover family models.

Reverse engineering feature models

Feature models play a central role in the variability management for SPLs (POHL;
BÖCKLE; VAN DER LINDEN, 2005). Feature models can be used to detect invalid relationships
or product configurations, core or dead features, redundancies, and enumerate or quantify all
valid products of an SPL (BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). Unfortunately,
software variants are often created in unstructured ways and may lack feature models as their
construction is time-consuming (HASLINGER; LOPEZ-HERREJON; EGYED, 2011).

Several approaches have been proposed to automatically build feature models from
sets of product configurations (HASLINGER; LOPEZ-HERREJON; EGYED, 2011; RYSSEL;
PLOENNIGS; KABITZSCH, 2011; AL-MSIE’DEEN et al., 2014). Approaches based on Formal
Concept Analysis have been promising as they can detect interdependencies and hierarchies
between features (AL-MSIE’DEEN et al., 2014).

This PhD Thesis addresses the task of “reverse engineering” family models through
exhaustive learning and product sampling. In this PhD thesis, there is an assumption that a feature
model is known a priori for the SPL. However, we believe that our strategy can be extended
to cope with non-existent feature models and learn family and feature models at once. Further
investigations on combining feature and family model learning are still required.

Software product line evolution

The tasks of product-line reengineering and refactoring are vital to the maintenance and
evolution of their software products. For an overview of product-line evolution, refactoring and
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reengineering, we refer the readers to Laguna and Crespo (2013), Fenske, Thüm and Saake
(2013), and Marques et al. (2019).

A variety of artifacts have been studied in SPL evolution, but feature models are by far
the most researched ones (MARQUES et al., 2019). Recent studies have shown that there is a
need for reengineering approaches tailored for agile processes (MARQUES et al., 2019), and
migration of SPL paradigms (LAGUNA; CRESPO, 2013). Several studies have investigated
model learning techniques to cope with traditional software evolution and regression testing
(SERY; FEDYUKOVICH; SHARYGINA, 2015; HUISTRA; MEIJER; VAN DE POL, 2018).
However, to the best of our knowledge, there are no works investigating model learning in the
setting of SPLs. Combined with state-machine learning (ANGLUIN, 1987), we believe that
our algorithm can support model-based regression testing in SPLs (RUNESON; ENGSTRöM,
2012) and family model checking (SABOURI; KHOSRAVI, 2013; TER BEEK; DE VINK;
WILLEMSE, 2017) in agile processes (NEUBAUER et al., 2012).

5.3 Research limitations and Assumptions

In this section, we describe the assumptions and limitations of the contributions in this
PhD Thesis. It should be noticed that the specific limitations of each chapter of this PhD Thesis
have been already reported in their respective sections of threats to validity. Thus, this section
focuses on broad limitations and assumptions that may support future works. Possible extensions
of this PhD Thesis are reported in the next final section.

In Chapter 3, we introduced an adaptive learning algorithm for evolving systems referred
to as partial-Dynamic L*M. In this study, the following assumptions have been required:

1. There is a MAT: As we rely on the principle of adaptive learning, the MAT framework

(ANGLUIN, 1987) shall be applicable to build black-box state machines by providing
inputs and observing outputs (VAANDRAGER, 2017).

2. SULs can be represented as Mealy machines: Our evolving system constitutes a set
of releases modeled as complete deterministic Mealy machines (GILL, 1962). This is
reasonable as it is a suitable abstraction for representing reactive systems (GILL, 1962;
BROY et al., 2005; CHOW, 1978) and the semantics of richer notations (HAREL, 1987;
CASSEL FALK HOWAR, 2015).

3. There is a versioning scheme: We require our SUL to be tracked using a versioning
scheme (PRESTON-WERNER, 2013; COGHLAN; STUFFT, 2013) that indicates prece-
dence/antecedence relationships between versions. This is acceptable as it is common
practice in software projects (SPINELLIS, 2005; DECAN; MENS, 2019).
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4. There are some reference FSMs: We rely on the assumption that previous versions shall
eventually have their respective FSM specifications while precedent releases may have
models outdated or unavailable (WALKINSHAW, 2013). Thus, by means of our technique,
we steer learning to preserved states and avoid irrelevant queries while re-building models
from systems that evolve over time.

In Chapter 4, we leveraged the concept of model learning for software product lines by
introducing the FFSMDiff algorithm to learn family models and analyzing the incorporation of
product sampling in this task. The following assumptions have been required:

1. Products can be represented as Mealy machines: As in our previous investigation, we
have assumed that product instances can be modeled as complete deterministic Mealy
machines (GILL, 1962). If a product-specific FSM is unavailable, model learning can be
used address this lack of specification. However, our technique can still be extended to
other state-based notations, such as transition systems (CLASSEN et al., 2013), timed
automata (CORDY et al., 2012), and statecharts (FRAGAL; SIMAO; MOUSAVI, 2019).

2. Products have their respective configurations known: To support the process of state
and transition annotation, we assume that product configurations are known.

3. Products have a common variability model that is known a priori: To optimize the
process of state and transition annotation, we assume that there is a known variability
model that is shared among the products under learning.

4. Product sampling collectively covers the product lines’ behavior: This is a common
assumption for product sampling techniques (VARSHOSAZ et al., 2018). If this is not
the case, then a possible alternative could be the adoption of an iterative CQ oracle that
alternates between testing and learning. Thus, partial family models learned from subsets
of configurations can be validated within unseen products.

5.4 Future work and possible extensions

Some of the possible extensions and future works to the research contributions of this
PhD Thesis include: Adaptive strategies for discrimination tree-based learning algorithms, Active
family model learning, Incremental Configuration Queries, and Fingerprinting evolving systems.
The future work are discussed in the next sections and illustrated in Figure 33. Each of these
future work are respectively indicated using double-dotted-dashed, dotted, dashed, and single-

dotted-dashed lines. Arrows arrows and extra boxes indicate the future work and how they are
associated with the Research Problems addressed in this PhD Thesis.
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Figure 33 – Future Work and their relationship with the Research Problems of this PhD Thesis

Source: Elaborated by the author.

Adaptive learning for discrimination tree-based algorithms

One branch of future research consists of extending the principles of adaptive learning
to discrimination tree-based algorithms, such as the TTT algorithm (ISBERNER; HOWAR;
STEFFEN, 2014b). Discrimination tree-based algorithms differ from observation table-based
algorithms, such as the L*

M (SHAHBAZ; GROZ, 2009), by their redundancy-free and improved
space complexity.

A possible way of extending such principles could be employing sequential Equivalence
Oracles (YANG et al., 2019), where execution traces from the SUL feed a passive learning
algorithm and models passively learned are used as candidate hypotheses from which EQs can
be derived. This approach could be easily applied to evolving systems and make the concept of
adaptive learning algorithm-independent. The relationship of this future work with the research
problems tackled in this PhD thesis is depicted in Figure 33 using double-dotted-dashed lines.

Active family model learning

Our two algorithms improve upon the state-of-the-art of automata learning and family
model learning as both independent and complementary strategies. One possibility for upon
the combination of these two strategies stands on an idea we vision as the active family model

learning framework. In Figure 34, we show our vision of active family model learning.

Our vision of active family model learning stands for a framework where SPLs can
have their family models incrementally harvested by re-using partial family models, i.e., family
models describing subsets of valid product instances from SPLs, to steer an active model learning
and testing procedure. We envisage that such variability-aware model learning framework will
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scale better than exhaustively and independently applying adaptive learning to product instances
or software releases. Concepts such as configurable test cases (FRAGAL, 2017) could support the
process of deriving EQs and steer learning to conditional states shared among different product
configurations. The relationship of this future work with the research problems tackled in this
PhD thesis is depicted in Figure 33 using dashed lines.

Incremental Configurable Queries

To complement the idea of active model learning, the concept of configurable queries
that we have discussed in terms of the Chvatal algorithm (CHVATAL, 1979) for T-wise sampling
could be improved with incremental sampling techniques (AL-HAJJAJI et al., 2016). Using
the IncLing algorithm (AL-HAJJAJI et al., 2016), users can incorporate products in the sample
and extends this set towards a representative set of products satisfying some T-wise criteria
(PERROUIN et al., 2010). Thus, subsets of product models that have already been incorporated
in some partial family model could be discarded from the learning process. Alternatively,
search-based techniques could be used for product sampling (ENSAN; BAGHERI; GAŠEVIĆ,
2012) and matching and merging large product models (AL-KHIATY; AHMED, 2017). The
relationship of this future work with the research problems tackled in this PhD thesis is depicted
in Figure 33 using single-dotted-dashed lines.

Fingerprinting evolving systems

Another possible application to our model learning approaches is software fingerprinting
(PELLEGRINO et al., 2017). Software fingerprinting is an important task in cybersecurity as it
supports authorship attribution, clone detection, library identification, and vulnerability analysis,



5.4. Future work and possible extensions 109

to name a few possible applications (ALRABAEE et al., 2020).

In the context of evolving systems, software versions could be modeled in terms of a
feature model with features connected by exclusive-OR relationships denoting its versions.
Once the models of an evolving system have been unified into a featured FSM, this family model
could play the role of an oracle to identify what versions (features) could be implemented in a
black-box evolving system of unknown version (configuration). The relationship of this future
work with the research problems tackled in this PhD thesis is depicted in Figure 33 using dashed

lines.
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