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Abstract
Family models are behavioral specifications extended with variability constraints that

enable efficient model-based analysis of software product lines (SPL). Albeit reasonably
efficient, the creation and maintenance of family models are time-consuming and error-
prone, especially if there are large models or crosscutting features. In this PhD project,
we investigate the problem of learning family models from SPLs. Our initial contributions
are two-fold: (1) partial-Dynamic L∗M , a novel adaptive algorithm to speed up automata
learning by exploring models from alternative software versions on-the-fly ; and (2) FFSMDiff,
a fully automated technique to learn family models by comparing, merging and annotating
finite state machines with variability constraints. Our experiments have shown that our
techniques are more efficient than the state-of-the-art of adaptive learning in terms of
queries and that succinct family models with fewer states can be learnt, especially if there
is high feature reuse. We envisage that our studies can leverage model-based techniques to
cases where models are non-existent or outdated and will scale better than independently
exploring several versions of evolving systems or product models from configurable systems.

1 Introduction

The modeling and analysis of software product lines (SPL) are known to be challenging; they
should incorporate variability to express product-specific behavior to avoid/minimize redundant
computations of shared assets and cater for feature interactions [8]. Thus, substantial effort
has been spent for developing analysis techniques specifically tailored to product families.

Family-based analysis operates on a single artifact, referred to as family model, that is
annotated with variability constraints to express variability in terms of states and transitions
specific to product configurations. This modeling approach paves the way for efficient model-
based testing and verification of SPLs. Nevertheless, the creation and maintenance of test
models are known to be time consuming and error-prone, especially if there are large SPLs or
crosscutting features; and the traceability between the family- and variability models can be
complex due to crosscutting features [3]. Added to this, as requirements change and product
instances evolve, the lack of maintenance may render models outdated [2]. To tackle these
issues, we proposed this PhD project to investigate how automata model learning [9] can be
lifted to the family-based level to support the extraction of family models from SPLs.

Model learning has been a popular approach to automatically derive behavioral models from
a system under learning (SUL) by posing tests as queries, i.e., transfer and separating sequences,
to reach and distinguish states [9]. It has been harnessed for a wide range of problems [1].
However, there is a lack of studies about how to cope with variability in time and space [6].

2 Approach

Applying model learning to real systems can be hampered by constant changes along their
life-cycle [5], as it may require learning from scratch. Adaptive learning attempts to speed up
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learning by reusing knowledge (i.e., sequences) from alternative/previous versions of a SUL.
Studies have shown that reusing sequences from pre-existing models can reduce the cost for
learning models from updates. However, after several changes, old separating and transfer
sequences may render redundant and deprecated queries, respectively [2].

2.1 Learning to Reuse: Adaptive Learning for Evolving Systems [2]

We improve upon the state-of-the-art by introducing partial-Dynamic L∗M (∂L∗M), an adaptive
algorithm that runs an on-the-fly exploration of reused models to avoid irrelevant queries [2].
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Figure 1: partial-Dynamic L∗M

To achieve this, our algorithm explores
transfer sequences to find redundancy. Then,
given a subset of “useful” transfer sequences,
we designed an optimization technique to find
deprecated separating sequences and hence,
the smallest subset with equivalent separating
capability, named experiment cover. These
subsets of transfer and separating sequences
initialize the L∗M algorithm for learning Mealy
machines [7]. Our experiments showed that
∂L∗M is less sensitive to evolution and more
efficient (i.e., requires less queries) than the
state-of-the-art for adaptive learning. The
paper has been published at the iFM’19 [2].

2.2 Learning from Difference:
An Automated Approach for Learning Family Models [3]

Within SPLs, similar challenges may emerge and hamper family-based testing and verification.
Families of software products share a common and managed set of features and hence, their
behavior tend to have commonalities and variabilities [8]. Thus, model learning for SPLs should
avoid redundant effort, and at the same time cater for variability and feature interaction.
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Figure 2: FFSMDiff

We have designed FFSMDiff , an
automated technique to learn fam-
ily models by comparing, merg-
ing and annotating product models.
Our technique is presented in terms
of featured finite state machines
(FFSM) [4], a family-based notation
that unifies Mealy Machines from
SPLs by annotating states and tran-
sitions with variability constraints.
A schematic representation of our
approach is depicted in Figure 2.

Our technique allows to (i) learn succinct FFSMs from two product models, and (ii) include
novel product-specific behavior into an existing FFSM. Our results support the hypothesis that
family models can be effectively merged into succinct FFSMs with fewer states, especially if
there is high feature sharing among products. These findings indicate that FFSMDiff paves
the way for family model learning techniques, which are still understudied; and efficient family-
based analysis, even if there are no models specified a priori. The full paper has been published
at the 23rd International Systems and Software Product Line Conference (SPLC’19) [3].
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3 Final Remarks and Next Steps

Real systems pass through many changes along their life-cycle and, as we often do not know how
states may have changed, their models tend to become outdated. To deal with these issues,
we have designed two techniques for learning models from evolving systems [2] and product
families [3]. Our techniques improve upon the state-of-the-art and are complementary to each
other in the sense that they pave the way for an active family model learning framework.
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Figure 3: Active family model learning

As the next step of this PhD project, we
will propose the concept of active family model
learning. In Figure 3, we show our vision of
active family model learning. Our vision of ac-
tive family model learning stands for a frame-
work where SPLs can have their family mod-
els harvested by re-using partial family mod-
els, i.e., family models describing subsets of
valid product instances from SPLs, to steer an
active model learning process [9]. We envis-
age that such variability-aware model learning
framework will scale better than exhaustively
and independently applying adaptive learning
to product instances or software releases.
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[6] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, Secaucus, NJ, USA, 2005.

[7] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In Ana Cavalcanti and Dennis R.
Dams, editors, FM 2009: Formal Methods, pages 207–222, Berlin, Heidelberg, 2009. Springer.
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