
Damasceno et al. Journal of Software Engineering Research and
Development (2018) 6:1
DOI 10.1186/s40411-017-0045-x

RESEARCH Open Access

Similarity testing for role-based access
control systems
Carlos Diego N. Damasceno1,2* , Paulo C. Masiero1,2 and Adenilso Simao1,2

*Correspondence:
damascenodiego@usp.br
1Institute of Mathematics and
Computer Science, University of Sao
Paulo (ICMC-USP), Trabalhador
Sao-carlense Avenue, 400,
13566-590 Sao Carlos-SP, Brazil
2Software Engineering Laboratory –
LabES, Trabalhador Sao-carlense
Avenue, 400, Room 6-208,
13566-590 Sao Carlos-SP, Brazil

Abstract
Context: Access control systems demand rigorous verification and validation
approaches, otherwise, they can end up with security breaches. Finite state machines
based testing has been successfully applied to RBAC systems and enabled to obtain
effective test cases, but very expensive. To deal with the cost of these test suites, test
prioritization techniques can be applied to improve fault detection along test
execution. Recent studies have shown that similarity functions can be very efficient at
prioritizing test cases. This technique is named similarity testing and assumes the
hypothesis that resembling test cases tend to have similar fault detection capabilities.
Thus, there is no gain from similar test cases, and fault detection ratio can be improved
if test diversity increases.

Objective: In this paper, we propose a similarity testing approach for RBAC systems
named RBAC similarity and compare to simple dissimilarity and random prioritization.
RBAC similarity combines the dissimilarity degree of pairs of test cases with their
relevance to the RBAC policy under test to maximize test diversity and the coverage of
its constraints.

Method: Five RBAC policies and fifteen test suites were prioritized using each of the
three test prioritization techniques and compared using the Average Percentage Faults
Detected metric.

Results: Our results showed that the combination of the dissimilarity degree to the
relevance of a test case to RBAC policies in the RBAC similarity can be more effective
than random prioritization and simple dissimilarity, by itself, in most of the cases.

Conclusion: The RBAC similarity criterion is suitable as a test prioritization criteria for
test suites generated from finite state machine models specifying RBAC systems.

Keywords: Finite state machines, Role-Based Access Control (RBAC), Test prioritization,
Similarity testing

1 Introduction
Access control is one of themajor pillars of software security. It is responsible for ensuring
that only intended users can access data and only the required permissions to accom-
plish a task is guaranteed (Ferraiolo et al. 2007). In this context, the Role-Based Access
Control (RBAC) model has been established as one of the most significant access control
paradigms. In RBAC, users receive privileges through role assignments and activate them
during sessions (ANSI 2004). Despite its simplicity, mistakes can occur during develop-
ment and lead to faults, or either security breaches. Therefore, software verification and
validation becomes necessary.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-017-0045-x&domain=pdf
http://orcid.org/0000-0001-8492-7484
mailto: damascenodiego@usp.br
http://creativecommons.org/licenses/by/4.0/

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 2 of 37

Finite State Machine (FSM) has been widely used for model-based testing (MBT) of
reactive systems (Broy et al. 2005). Previous investigations using random FSMs have
shown that recent test generation methods (e.g., SPY (Simão et al. 2009)), compared to
traditional methods (e.g., W (Chow 1978) and HSI (Petrenko and Bochmann 1995)), tend
to rely on fewer and longer test cases, reducing the overall test cost without impacting
test effectiveness (Endo and Simao 2013). In the RBAC domain, although very effective
and less costly, recent test generation methods still tend to output large amounts of test
cases (Damasceno et al. 2016). Thus, there is a need for additional steps during software
testing, such as test prioritization (Mouelhi et al. 2015).
Test case prioritization aims at finding an ideal ordering of test cases so that maximum

benefits can be obtained, even if test execution is prematurely halted at some arbitrary
point (Yoo and Harman 2012). A test prioritization criterion that has recently shown
very promising results is similarity testing (Cartaxo et al. 2011; Bertolino et al. 2015).
In similarity testing, we assume that resembling test cases tend to cover identical parts
of an SUT, have equivalent fault detection capabilities, and no additional gain can be
expected if executed simultaneously. This concept has been investigated under MBT
(Cartaxo et al. 2011), access control testing (Bertolino et al. 2015) and software product
line (SPL) testing (Henard et al. 2014) domains, but it has never been applied to RBAC.
Moreover, since the fault detection effectiveness of test criteria are strongly related to its
ability to represent faults of specific domains (Felderer et al. 2015), similarity testing may
not be necessarily effective on RBAC domain.
In this paper, we investigate similarity testing for RBAC systems. A similarity testing cri-

terion named RBAC similarity is introduced and compared to random prioritization and
simple dissimilarity criteria using Average Percentage Faults Detected (APFD)metric, five
RBAC policies, and three FSM-based testing methods. Our results show that RBAC sim-
ilarity makes test prioritization more suitable to the specificities of the RBAC model and
achieve higher APFD values compared to simple dissimilarity and random prioritization,
in most of the cases.
This paper is organized as follows: Section 2 shows the theoretical background

related to our investigation. Sections 2.1 to 2.3 give a brief introduction to FSM-
Based Testing. The RBAC model and an FSM-based testing approach for RBAC
systems are introduced in Sections 2.4 and 2.5. The test case prioritization prob-
lem and similarity testing are discussed in Section 2.6. Section 3 details our
proposed similarity testing criteria named RBAC similarity. Section 4 depicts the
experiment we performed to compare RBAC similarity to simple dissimilarity and
random prioritization techniques. The results obtained from our experiments are
analyzed and discussed. The threats to validity and final remarks are presented in
Sections 6 and 7, respectively.

2 Background
This section introduces the background behind our similarity testing approach for
RBAC systems. First, we present the concept of FSM-based testing and three test
generation methods (i.e., W, HSI, and SPY) which were considered in this study.
Second, the RBAC model and an FSM-based testing approach for RBAC systems are
described. At last, the test case prioritization problem and the specificities of the
similarity testing are detailed.

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 3 of 37

2.1 Finite state machine based testing

A Finite State Machine (FSM) is a hypothetical machine composed of states and tran-
sitions (Gill 1962). Formally, an FSM can be defined as a tuple M = (S, s0, I,O,D, δ, λ)

where S is a finite set of states, s0 ∈ S is the initial state, I is the set of input symbols, O is
the set of output symbols, D ⊆ S × I is the specification domain, δ : D → S is the transi-
tion function, and λ : D → O is the output function. An FSM always has a single current
(origin) state si ∈ S which changes to destination (tail) state sj ∈ S by applying an input
x ∈ I where sj = δ(si, x), and returns an output y = λ(si, x). An input x is defined for s
if in state s there is a transition consuming input x (i.e. (s, x) ∈ D). Such transition is said
defined. An FSM is complete if all inputs are defined for all states, otherwise it is partial.
Figure 1 depicts an example of a complete FSM with three states {q0, q1, q2}.
A sequence α = x1x2...xn ∈ I is defined for state s ∈ S, if there are states s1, s2, ..., sn+1

such that s = s1 and δ(si, xi) = si+1, for all 1 ≤ i ≤ n. The concatenation of two sequences
α and ω is denoted as αω. A sequence α is a prefix of a sequence β , denoted by α � β ,
if β = αω, for some given input sequence ω. An empty sequence is denoted by ε and a
sequence α is a proper prefix of β , denoted by α < β , if β = αω for a given ω �= ε. The
set of prefix sequences of a set T is defined as pref (T) = {α | ∃β ∈ T and α < β}, if
T = pref (T), T is prefix-closed.
The transition and output functions can be lifted to input sequences as usual; for the

empty sequence ε, we have that δ(s, ε) = s and λ(s, ε) = ε. For a sequence αx defined for
state s, we have that δ(s,αx) = δ(δ(s,α), x) and λ(s,αx) = λ(s,α)λ(δ(s,α), x). A sequence
α = x1x2...xn ∈ I is a transfer sequence from s to sn+1 if δ(s,α) = sn+1, thus sn+1 is
reachable from s. If every state of an FSM is reachable from s0 then it is initially connected
and if every state is reachable from all states, it is strongly connected.
The symbol �(s) denotes all input sequences defined for a state s and �M abbreviates

�(s0), which refers to all defined input sequences for an FSM M. A separating sequence
for two states si and sj is a sequence γ such that γ ∈ �(si) ∩ �(sj) and λ(si, γ) �= λ(sj, γ).
In addition, if γ is able to distinguish every pair of states of an FSM, it is a distinguish-
ing sequence. Considering the FSM presented in Fig. 1, the sequence a is a separating
sequence for states q0 and q1 since λ(q0, a) = 0 and λ(q1, a) = 1.
Two FSMs MS = (S, s0, I,O,D, δ, λ) and MI = (S′, s′0, I,O′,D′, δ′, λ′) are equivalent if

their initial states are. Two states si, sj are equivalent if ∀ α ∈ �(si) ∩ �(sj), λ(si,α) =

Fig. 1 Example of complete FSM

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 4 of 37

λ′(sj,α). An FSMMmay have a reset operation, denoted by r, which takes to s0 regardless
the current state. An input sequence α ∈ �M starting with a reset symbol r is a test case of
M. A test suite T consists of a finite set of test cases ofM, such that there are no α,β ∈ T
where α < β . Prefixes α < β are excluded from test suite since the execution of β implies
the execution of α. The length of a test case α is represented by |α| and describes the cost
of executing α plus the reset operation. The number of test cases of one test suite T also
describes the number of resets of T which is depicted as |T |.

2.2 Mutation analysis in FSM-based testing

In FSM-based testing, given a specification M, the symbol �(M) denotes the set of all
deterministic FSMs, variants of M, with the same inputs of M for which all sequences
in �M are defined. The set �(M) is called fault domain for M and these variants of M
are named mutants and can be obtained either manually or by automatically performing
simple syntactic changes using mutation operators (Andrews et al. 2006). Given m ≥ 1,
then�m(M) denotes all FSMs of�(M)with at mostm states. Given a specificationMwith
n states, a test suite T ⊆ �M is m-complete if for each N ∈ �m distinguishable from M,
there is a test case t ∈ T that distinguishM fromN. The following mutation operators are
often used on FSM-based testing (Chow 1978): change initial state (CIS), which changes
the s0 of an FSM to sk , such that s0 �= sk ; change output (CO), which modifies the output
of a transition (s, x), using a different function
(s, x) instead of λ(s, x); change tail state
(CTS), which modifies the destination state of a transition (s, x), using a different function
�(s, x) instead of δ(s, x); and add extra state (AES), which inserts a new state such that
mutant N is equivalent to M. Figure 2 shows examples of mutants of the FSM shown in
Fig. 1 using CIS, CO, CTS, and AES operators. Changes are marked with an asterisk (*).
If the output of a mutant is different from the original FSM, for any test case, the

mutant is distinguished (or killed) and the seeded fault denoted by the mutant is detected.

Fig. 2 Examples of FSM Mutants. a FSM mutant - CIS. b FSM mutant - CO. c FSM mutant - CTS. d FSM mutant
- AES

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 5 of 37

Moreover, some mutants can be syntactically different but functionally equivalent to the
original model. These are called equivalent mutants. The process of analyzing if test cases
trigger failures and kill mutants is called mutation analysis and is often used in software
testing research (Jia and Harman 2011; Fabbri et al. 1994).
The main outcome of the mutation analysis is the mutation score, which indicates the

effectiveness of a test suite. Given a test suite T, the mutation score (or effectiveness) can
be calculated using the equation Teff = #km

(#tm−#em)
. The #km parameter represents the

number of killed mutants; the #tm defines the total number of generated mutants; and
#em denotes the number of mutants equivalent to the original SUT. Thus, the mutation
score consists of the ratio of the number of detected faults over the total number of non-
equivalent mutants. An m-complete test suite has full fault coverage for a given domain
�m(M) and can detect all faults in any FSM implementation with at mostm states. Thus,
it scores 1.0, by definition.

2.3 FSM-based testing methods

FSM-based testing relies on FSM models to derive test cases and evaluate if the behavior
of an SUT conforms to its specification (Utting et al. 2012). To check this behavioral con-
formance, two basic sets of sequences are often used: the state cover (Q) and transition
cover (P) sets (Broy et al. 2005).
A set of input sequences is a state cover set of M if for each state si ∈ S there exists an

α ∈ Q such that δ(s0,α) = si and ε ∈ Q to reach the initial state. A set of input sequences
P is named transition cover set of M if for each transition (s, x) ∈ D there are sequences
α,αx ∈ P, such that δ(s0,α) = s, and ε ∈ P to reach the initial state. The transition cover
set of an FSM is obtained by generating the testing tree of this FSM (Broy et al. 2005). The
state and transition cover sets of the FSM depicted in Fig. 1 are respectively Q = {ε, a, b}
and P = {ε, a, aa, ba, b, ab, bb}. After obtaining state and transition coverage, FSM-based
testing methods require some pre-defined sets to identify the reached parts of an FSM.
These are the characterization set and separating families.
A characterization set (W set) contains at least one input sequence which distinguishes

each pair of states of an FSM. Formally, it means that for all pairs of states si, sj ∈ S, i �= j,
∃α ∈ W such that λ(si,α) �= λ(sj,α).
A separating family, or harmonized state identifiers, is a set of sequences Hi for each

state si ∈ S that satisfies the condition ∀si, sj ∈ S, si �= sj ∃β ∈ Hi, γ ∈ Hj that has a
common prefix α such that α ∈ �(si) ∩ �(sj) and λ(si,α) �= λ(sj,α). In the worst case,
the separating family is theW set itself.
The characterization set of the FSM model shown in Fig. 1 is W = {a, b}, and the sep-

arating family of states q0, q1, q2 are respectively H0 = {a, b}, H1 = {a}, and H2 = {b}.
These sets are building blocks for most traditional and recent testing methods, such
as W (Chow 1978; Vasilevskii 1973), HSI (Petrenko and Bochmann 1995), and SPY
(Simão et al. 2009).

2.3.1 Wmethod

The W method is the most classic FSM-based test generation algorithm (Chow 1978;
Vasilevskii 1973). It uses the P set, to traverse all transitions, concatenated to the W set,
for state identification. Moreover, it can also detect an estimated number of extra states
using a traversal set

⋃m−n
i=0 (Ii), such that (m − n) is the number of extra states and Ii

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 6 of 37

contains all sequences of length i combining symbols of I. Thus, by concatenating P, the
traversal set, and W, the W method can detect (m − n) extra states (e.g., AES mutants).
Assuming the FSM in Fig. 1, no extra states (m = n) or proper prefixes, W method can
generate TW = {aaa, aab, aba, abb, baa, bab, bba, bbb}, and |TW | = 8.

2.3.2 HSI method

The Harmonized State Identifiers (HSI) method (Petrenko and Bochmann 1995) uses
state identifiers Hi to distinguish each state si ∈ S of an FSM model. The HSI test suite is
obtained by concatenating the transition cover set P withHi, such that δ(s0,α) = si, si ∈ S
and α ∈ P. The HSI method can be applied to complete and partial FSMs. Assuming
the FSM in Fig. 1, no extra states or proper prefixes, HSI method can generate THSI =
{aaa, aba, abb, baa, bba, bbb}, and |THSI | = 6, which is 75% the size of TW .

2.3.3 SPYmethod

The SPY method (Simão et al. 2009) is a recent test generation method able to generate
m-complete test suites on-the-fly. First, the state cover set Q is concatenated to the state
identifiers Hi. Afterwards, differently from traditional methods, such as W and HSI, the
traversal set is distributed over the set containing Q concatenated with Hi based on suf-
ficient conditions (Simão et al. 2009). Thus, by avoiding testing tree branching, test suite
length and the number of resets can be reduced.
Experimental studies have indicated that SPY can generate test suites on average 40%

shorter than traditional methods (Simão et al. 2009). Moreover, it can achieve higher
fault detection effectiveness even if the number of extra states is underestimated (Endo
and Simao 2013). Assuming the FSM in Fig. 1, no extra states or proper prefixes, SPY
method can generate TSPY = {aaaba, abbb, baa, bba}, and |TSPY | = 4, which is 50% the
size of TW .

2.4 Role-based access control

Access Control (AC) is one of the most important security mechanisms (Jang-Jaccard and
Nepal 2014). Essentially, it ensures that only allowed users have access to protected sys-
tem resources based on a set of rules, named security policies, that specify authorizations
and access restrictions (Samarati and de Vimercati 2001). In this context, the Role-Based
Access Control (RBAC) model has been established as one of the most significant access
control paradigms (Ferraiolo et al. 2007). It uses the concept of grouping privileges to
reduce the complexity of security management tasks (Samarati and de Vimercati 2001).
In RBAC, roles describe organizational figures (e.g., functions or jobs) which own a

set of responsibilities (e.g., permissions). Roles can be assigned or revocated to users via
role assignments and performed under sessions through role activations. Role hierarchies
can be specified as inheritance relationships between senior and junior roles (e.g., sales
director inherits permissions from sales manager). Thus, the mapping between security
policies and the organizational structure can be more natural. These elements compose
the ANSI RBACmodel (ANSI 2004) which can also be extended to groups of administra-
tive roles and permissions (Ben Fadhel et al. 2015). In Fig. 3, the ANSI RBAC and, within
dashed lines, the Administrative RBAC models are depicted.
Masood et al. (2009) define an RBAC policy as a 16-tuple P = (U ,R,Pr,UR,PR,≤A,≤I ,

I, Su,Du, Sr ,Dr , SSoD,DSoD, Ss,Ds), where:

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 7 of 37

Fig. 3 ANSI RBAC and administrative RBAC

• U and R are the finite sets of users and roles;
• Pr is the finite set of permissions;
• UR ⊆ U × R is the set of user-role assignments;
• PR ⊆ Pr × R is the set of permission-role assignments;
• ≤A⊆ R × R and ≤I⊆ R × R are the role activation and inheritance hierarchies

relationships;
• I = {AS,DS,AC,DC,AP,DP} is the finite set of types of RBAC requests which

respectively stand for user-role assignments (AS), deassignments (DS), activations
(AC) and deactivations (DC); and permission-role activations (AC) and
deactivations (DC);

• Su,Du : U → Z
+ are static and dynamic cardinality constraints on users;

• Sr ,Dr : R → Z
+ are static and dynamic cardinality constraints on roles;

• SSoD,DSoD ⊆ 2R are the Static and Dynamic Separation of Duty (SoD) sets,
respectively;

• Ss : SSoD → Z
+ specifies the cardinality of SSoD sets;

• Ds : DSoD → Z
+ specifies the cardinality of DSoD sets.

Role inheritance hierarchy is a role-to-role relationship (e.g., rj ≤I rs) that enable
users assigned to a senior role (rs) to have access to all permissions of junior roles (rj).
Role activation is a variant of role hierarchy (e.g., rj ≤A rs) which enable users assigned
to a senior role (rs) to activate junior roles (rj) without being directly assigned to that
junior role (Masood et al. 2009). Cardinality constraints specify a bound on the cardi-
nality of user-role assignment and role activation relationships (Ben Fadhel et al. 2015).
Static cardinality constraints (Su and Sr) bound user-role assignments and dynamic car-
dinality constraints (Du and Dr) limit user-role activations (i.e., role activations) and they
can be specified from a user (Su and Du, respectively) and role (Sr and Dr , respectively)
perspectives. Separation of Duty (SoD) constraints define static and dynamic (SSoD and
DSoD, respectively) mutual exclusion relationships among roles based on a positive inte-
ger number n ≥ 2 to avoid the simultaneous assignments or activations of conflicting
roles (ANSI 2004) (e.g., given SSoD = {staff, accountant, director} and n = 2, SSSoD = 2
defines that no user can be assigned to more than two roles of SSoDi set). Listing 1
shows an example of RBAC policy with two users (line 1), one role (line 2), and two
permissions (line 3).

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 8 of 37

1 U = { u1 , u2 } /∗ u s e r s ∗/
2 R = { r1 } /∗ r o l e s ∗/
3 Pr = { pr1 , pr2 } /∗ pe rmi s s i on s ∗/
4 UR = { (u1 , r1) } /∗ user−r o l e a s s i gnments ∗/
5 PR = { (r1 , pr1) , (r1 , pr2) } /∗ permiss ion−r o l e a s s i gnments ∗/
6 Su (u1) = Su (u2) = 1 /∗ s t a t i c use r c a r d i n a l i t y c o n s t r a i n t s ∗/
7 Du (u1) = Du (u2) = 1 /∗ dynamic use r c a r d i n a l i t y c o n s t r a i n t s ∗/
8 Sr (r1) = 2 /∗ s t a t i c r o l e c a r d i n a l i t y c o n s t r a i n t s ∗/
9 Dr (r1) = 1 /∗ dynamic r o l e c a r d i n a l i t y c o n s t r a i n t s ∗/
Listing 1 Example of RBAC policy

User u1 is assigned to role r1 (line 4) that is assigned to the permissions pr1 and pr2
(line 5). Both users can be assigned and activate at most one role (line 6-7). Role r1 can be
assigned to at most two users (line 8); however, it can be activated by one user per time
(line 9).

2.5 FSM-based testing of RBAC systems

Masood et al. (2009) propose an approach based on FSMs to specify and test the behav-
ior of RBAC systems. Given an RBAC policy P, an FSM(P) consists of a complete FSM
modeling all access control decisions that an RBAC mechanism must enforce. Formally,
an FSM(P) is a tuple FSM(P) = (SP, s0, IP,O,D, δP , λP) where

• SP is the set of states that P reach given its mutable elements;
• s0 ∈ S is the initial state where P currently stands given UR and PR;
• IP is the input domain where IP = {(rq,up, r)} for all rq ∈ I, u ∈ {U ∪ Pr} and r ∈ R};
• O is the output domain formed by granted and denied ;
• D = SP × IP is the specification domain;
• δP : D → SP is the state transition function; and
• λP : D → O is the output function.

Each state s ∈ SP is labeled using a sequence of pairs of bits containing one pair for
each combination of user-role and permission-role. A pair user-role can be assigned (10),
activated (11) or not assigned (00); and a pair permission-role can be assigned (10) or not
assigned (00). The maximum number of states of FSM(P) is bounded to 3|U|×|R| and the
number of reachable states depends on the constraints of P. The set of input symbols IP
contains all combinations of users, roles, permissions and types of RBAC requests which
can be applied to P. Formally, it means that IP = {(rq,up, r)} ∀ rq ∈ I, up ∈ {U ∪ Pr} and
r ∈ R.
Transitions of FSM(P) denote access control decisions on destination states (sj ∈ SP)

and output symbols (granted or denied) given the specification domain, that is complete
(Masood et al. 2009) and composed by pairs of an origin state (si ∈ SP), and an input sym-
bol (rq,up, r) ∈ IP, and the constraints of P. Given the constraints of P, an origin state
si and an input symbol (rq,up, r), a destination state sj = δP(si, (rq,up, r)) is defined by
flipping the bits of si label related to an user (or permission) up and role r, if the con-
straints of P allow such request. This procedure denotes how the state transition function
δP operates.
Regarding the output function λP, a denied symbol is returned to inputs (requests)

which do not change the state of P, such as user-role assignments already performed or
requests denied due to some cardinality constraint. Thus, denied is only returned on self-
loops. Transitions with different origin and destination states always return granted. The

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 9 of 37

generation of an FSM(P) can be iteratively performed by evaluating all defined inputs of
state s0 given the constraints of P (�FSM(P)).
Figure 4 shows the FSM(P) of the RBAC policy presented in Listing 1. Self-loop transi-

tions, corresponding to requests returning denied, and transitions related to permissions
are not shown to keep the figure uncluttered. The initial state 1000 depicts line 4 of List-
ing 1 where u1 is assigned to r1. From state 1000 all defined inputs are applied once to
reach states 1100, 1010 and 0000 where respectively user u1 activates r1, u1 and u2 are
assigned to r1, and none is assigned to r1. This procedure is iteratively repeated over
all reached states until no new state is obtained. At the end, the resulting FSM(P) has
a total of eight states due to Dr(r1) = 1 which makes state 1111 unreachable, but not
9 = 3|U|×|R|, which is the maximum number of states.

2.5.1 Test generation from FSM(P)

Given an RBAC system implementing a policy P, FSM-based testing can verify if the
behavior of such system conforms to P using its respective FSM(P) and some test
generation method, such as W or transition cover (Masood et al. 2009).
Let R denote the set of all RBAC policies. Given a policy P ∈ R, the set R can be

partitioned into two subsets of policies: Equivalent (conforming) to P (RP
conf); and Faulty

policies (RP
fault). Since R is infinitely large, Masood et al. (2009) proposed a mutation

analysis technique to measure the effectiveness of a test suite as its ability to detect if an
RBAC system behaves as some faulty policy P′ ∈ RP

fault .
The RBAC mutation analysis restricts RP

fault to be finite by only considering
policies mutants P′ = (U ,R,Pr,UR′,PR′,≤′

A,≤′
I , I, S′

u,D′
u, S′

r ,D′
r , SSoD′,DSoD′, S′

s,D′
s)

generated by making simple changes to policy P = (U ,R,Pr,UR,PR,≤A,≤I
, I, Su,Du, Sr ,Dr , SSoD,DSoD, Ss,Ds). Note that all mutants share the same set of users (U),
roles (R), permissions (Pr) and inputs (I) of the original policy P. The set RP

fault of faulty
policies is generated by making changes using two kinds of operators:mutation operators
and element modification operators.

Fig. 4 Example of FSM(P) specifying an RBAC policy

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 10 of 37

The mutation operators generate RBAC mutants by adding, modifying and removing
elements from UR, PR, ≤A, ≤I , SSoD, and DSoD sets (e.g. add role to SSoD set). The
element modification operatorsmutate policies by incrementing or decrementing the car-
dinality constraints Su,Du, Sr ,Dr , Ss, andDs. Each of these RBAC faults has corresponding
faults on the FSM domain (Chow 1978), and FSM-based testing methods are also able to
detect them (Masood et al. 2009). Figure 5 illustrates a part of one testing tree generated
from four test cases and the FSM(P) in Fig. 4.
By executing this test suite, an RBAC mutant generated from the policy shown in

Listing 1 by applying the element modification operator to increment Dr(r1) = 1 to
Dr(r1) = 2 can be detected. The FSM of this variant has state 1111 as reachable and,
since test case t3 covers the transition 1110−AC(u2, r1) → 1110, it can detect this fault.

2.6 Test case prioritization

Although very effective, FSM-based testing of RBAC systems tends to generate a large
number of test cases regardless the methods used (Damasceno et al. 2016). Thus, devel-
opment processes of RBAC systems with time and resources constraints may demand
improvements on test execution. To cope with this issue, different techniques have been
proposed to improve cost-effectiveness of test suites, such as Test Suite Minimization,
also called test suite reduction, where redundant test cases are permanently removed; and
Test Case Selection, which selects test cases based on changed parts of a System Under
Test (SUT) (Yoo and Harman 2012). These techniques reduce time effort, but they may
not work effectively, since they may also omit important test cases able to detect certain
faults (Ouriques 2015).
Test Case Prioritization improves test execution without filtering out any test case.

It aims at identifying an efficient test execution ordering so that maximum benefits
can be obtained, even if test execution is prematurely halted at some arbitrary point
(Ouriques 2015). To that, it uses a function f which quantitatively describes the quality of

Fig. 5 Testing Tree of an FSM(P)

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 11 of 37

an ordering as test criteria (e.g., test effectiveness, code coverage). To illustrate test prior-
itization, consider an hypothetical SUT with 10 faults and five test cases A,B,C,D,E, as
shown in Table 1.
In this example, all faults can be detected by running test cases C and E, since they

respectively have 70% and 30% of fault-detection effectiveness. Test case A, on the other
hand, can detect only 20% of the faults so it can negatively affect fault detection along test
execution if placed at the beginning of a test suite. Thus, it is possible to speed up fault
detection during test cases execution by placing C and E at the beginning of the test suite.
After test prioritization, the quality of a ordering can be measured using the Average

Percentage Faults Detected (APFD) metric. The APFD is a metric commonly used in test
prioritization research (Elbaum et al. 2002), and it is defined as follows:

APFD =
∑n−1

i=1 Fi
n × l

+ 1
2n

(1)

In Eq. 1, the parameter n describes the total number of test cases, l defines the number
of faults under consideration and Fi specifies the number of faults detected by a test case i.
The APFD value depicts the detection of faults (i.e., test effectiveness) along with test
execution given test cases ordering. This value ranges from 0 to 1 and the greater the
APFD is, the better is test cases ordering. Table 2 shows the APFD for three prioritized
test suites, T1, T2 and T3 obtained from test cases in Table 1. In this example, the APFD
points that T3 performs better than T2 and T1.

2.7 Similarity testing

Similarity testing is a promising test case prioritization approach that uses similarity
functions to calculate the degree of similarity between pairs of tests and define test
ordering (Cartaxo et al. 2011; Bertolino et al. 2015; Coutinho et al. 2014). It is an all-to-
all comparison problem (Zhang et al. 2017) and, as most test prioritization algorithms
(Elbaum et al. 2002), it has complexity O(n2). It assumes that resembling test cases are
redundant in a sense they cover the same features of an SUT and tend to have equivalent
fault detection capabilities (Bertolino et al. 2015).
To run similarity testing, a similarity matrix describing the resemblance between all

pairs of test cases of a test suite T must be calculated with a similarity function dx. The
similarity matrix SM of a test suite T with n test cases is a matrix where each element

Table 1 Example of test cases with fault-detection capability, taken from Elbaum et al. (2000)

Fault revealed by test case

Test case 1 2 3 4 5 6 7 8 9 10

A • •
B • • • •
C • • • • • • •
D •
E • • •

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 12 of 37

Table 2 APFD value for the test cases example

Test suite id Test cases ordering APFD

T1 A, B, C,D, E 0.5

T2 E,D, C, B, A 0.64

T3 C, E, B, A,D 0.84

SMij = dx(ti, tj) describes the similarity degree between two test cases ti and tj, such that
1 ≤ i < j ≤ n. In Eq. 2 an illustrative example of similarity matrix is presented.

t1 t2 · · · tn−1 tn

SM =

t1
t2
...

tn−1
tn

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 dx(t1, t2) · · · dx(t1, tn−1) dx(t1, tn)
0 0 dx(t2, tn)
...

...
. . .

...
...

0 dx(tn−1, tn)
0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

After calculating the similarity matrix, test ordering is defined based on similarity
degrees (Cartaxo et al. 2011; Bertolino et al. 2015; Henard et al. 2014; Coutinho et al.
2014). According to Elbaum et al. (2002), the ordering process can use total or additional
information. Test prioritization based on total information uses only pairwise similarity
for ordering test cases, whereas additional information includes the similarity of previ-
ously executed test cases to improve ordering (i.e., the most distinct test case compared
to all previous).
Cartaxo et al. (2011) showed that similarity testing can be more effective than ran-

dom prioritization when applied to test sequences automatically generated from Labelled
Transition Systems (LTS) (Cartaxo et al. 2011). In their study, the similarity degree (dsd)
between two test cases was calculated as the number of identical transitions (nit) divided
by the average test case length. The average length was used to avoid small (large) sim-
ilarity degrees due to similar short (long) test sequences. An extensive investigation on
similarity testing for LTS is found in (Coutinho et al. 2014).
Bertolino et al. (2015) also investigated the application of similarity testing on XACML

systems. XACML is an XML-based declarative notation for specifying access control
policies and evaluating access requests (OASIS 2013). Essentially, they proposed a test
prioritization approach named XACML similarity (dxs) which considers three values for
test prioritization: (i) a simple similarity (dss), which describes how much resembling are
two test cases (ti, tj) based on their lexical distance; (ii) an applicability degree (AppValue),
which points the percentage of parts of an XACML policy affected by a test case; and (iii)
a priority value (PriorityValue) which gives weight to pairs of test cases based on their
applicability degree. Although investigations have shown that simple similarity dss is com-
parable to random prioritization, XACML similarity enabled significant improvements
compared to simple similarity and random prioritization.
It should be noticed that the XACML standard can be used to specify and implement

RBAC policies (OASIS 2014). However, its current version (OASIS 2014) does not sup-
port the specification of SSoD and DSoD constraints. Moreover, since the effectiveness of
test criteria is strongly related to its ability to represent specific domain faults (Felderer et
al. 2015), there is no guarantee that similarity testing can be as effective on RBAC as they
were on XACML and LTS.

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 13 of 37

3 Similarity testing for RBAC systems
In this section, we introduce our similarity testing approach specific to RBAC systems,
named RBAC similarity. The RBAC similarity consists of a similarity testing approach
based on Cartaxo et al. (2011) and Bertolino et al. (2015) approaches and suitable for
FSM-based testing of RBAC systems. A prioritization algorithm used to perform ordering
test cases based on similarity criteria is also discussed.

3.1 RBAC similarity

In XACML similarity, applicability is the relation between an access request and an
XACML policy which quantitatively describes the impact of this request (i.e., test case)
to the rules of the policy (Bertolino et al. 2015). In our work we extend the concept of
XACML applicability to the RBAC domain and propose the RBAC similarity, a similarity
testing approach specific to RBAC systems.
Essentially, the RBAC similarity (drs) takes an RBAC policy P and a test suite T gener-

ated from an FSM(P) and evaluates the degree of resemblance between all pairs of test
cases ti, tj ∈ T . To that, it uses a dissimilarity function and the applicability of this pair
of test cases to the policy P under test. Given this information, a test case prioritization
algorithm performs test ordering from the most distinct and relevant tests to the less
diverse and suitable ones. To support similarity testing for RBAC, we proposed the con-
cept of RBAC applicability which quantitatively describes the relevance of a test case to
one RBAC policy. The dissimilarity function and the RBAC applicability are detailed in
the following sections.

3.1.1 Simple dissimilarity:

The simple dissimilarity between test cases is measured based on the number of distinct
transitions (ndt). Given two test cases ti and tj, the degree of simple dissimilarity (dsd) is
calculated as presented in Eq. 3.

dsd(ti, tj) = ndt(ti, tj)
avg(length(ti) + length(tj))

(3)

The number of distinct transitions (ndt) between two test cases (ti, tj) is counted and
then divided by the average length of the test cases ti and tj. Transitions are considered
distinct when there is a mismatch between their origin states, input or output symbols, or
destination (tail) states. The average test cases length is used to avoid small (or large) sim-
ilarity degrees due to similar short (or long) test case lengths. Listing 2 shows an example
of four test cases and their respective transitions and states covered given the FSM(P)

previously shown in Fig. 4. The number of distinct transitions, the average length and the
simple dissimilarity dsd for each pair of test cases are shown in Table 3.

Table 3 Simple dissimilarity of each pair of test cases

Pairs (ti , tj) ndt avg dsd(ti , tj)

(t0, t1) 4.0 2.0 2.0

(t0, t2) 3.0 1.5 2.0

(t0, t3) 4.0 2.0 2.0

(t1, t2) 5.0 2.5 2.0

(t1, t3) 6.0 3.0 2.0

(t2, t3) 5.0 2.5 2.0

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 14 of 37

1 1000 − DS(u2, r1)/denied → 1000 / / t0
2 1000 − AS(u2, r1)/granted → 1010 − AC(u2, r1)/granted → 1011 − DS(u2, r1)/granted → 1000 / / t1
3 1000 − DS(u1, r1)/granted → 0000 − DS(u1, r1)/denied → 1000 / / t2
4 1000 − AC(u1, r1)/granted → 1100 − AS(u2, r1)/granted → 1110 − AC(u2, r1)/denied → 1110 / / t3
Listing 2 Test cases example

3.1.2 RBAC applicability:

The idea of the RBAC applicability is to quantitatively describe the relevance of a test case
to one RBAC policy under test. An RBAC constraint is applicable to a test case if there
is a match between the users, roles, or permissions of any input of this test case and the
attributes of the constraint. For example, if an RBAC policy contains a static cardinality
constraint Su(u1) = 1, this constraint must regulate (i.e., apply some regulation to) all test
cases with user u1 as test input (e.g.,AS(u1, r2)). This idea enables tomeasure howmuch a
test case t may impact a given policy P, without considering dynamic (behavioral) aspects
of the RBAC model (e.g., FSM(P) states/transitions). Thus, it describes the structural or
static coverage of a test case t over one policy P.
However, since RBAC is essentially a reactive system, a behavioral view of a test case

is also necessary. In order to satisfy this requirement, we also propose the concept of
behavioral or dynamic coverage. An RBAC constraint of a policy P reacts to a test case
when this constraint is applicable to any input symbol and it influences on (enforces) the
access control decision. As example, the test case t3, shown in Fig. 5, depicts a scenario
of an RBAC policy containing a dynamic cardinality constraint Dr(r1) = 1 and two users
u1 and u2 attempting to activate r1. This constraint is applicable (and reacts) to the last
input requesting the second role activation of r1, and enforces a denied response. This
information is associated with many transitions of the FSM(P) and used as requirements-
based coverage criteria (Utting et al. 2012). Thus, by quantifying the number of RBAC
constraints reacting to the inputs of a test case, the dynamic coverage of a policy P can be
measured and support test prioritization.
Based on the concepts of static and dynamic coverage, we proposed the RBAC Appli-

cability Degree (AD), which is an array of four values defined as shown in Eq. 4.

ADP(t) = [
padP(t) asadP(t) acadP(t) pradP(t)

]
(4)

The RBAC Applicability Degree (AD) of a test case t to a given a policy P consists of
four values:

• Policy Applicability Degree (padP(t)), which shows the ratio of test inputs
applicable to any RBAC constraint over the test case length;

• Assignment Applicability Degree (asadP(t)), which shows the number of RBAC
constraints related to assignment faults reacting to t ;

• Activation Applicability Degree (acadP(t)), which shows the number of RBAC
constraints related to activation faults reacting to t ; and

• Permission Applicability Degree (pradP(t)), which shows the number of RBAC
constraints related to permission faults reacting to t.

The padP(t) measures how much applicable one test case t is to a given policy based
on all RBAC constraints applicable to t. The asadP(t) gives a quantitative information
about how many RBAC constraints related to assignment faults (i.e., UR, Su, Sr , SSoD,
and Ss) react to t. The acadP(t) gives a quantitative information about how many RBAC

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 15 of 37

constraints related to activation faults (i.e., ≤A, Du, Dr , DSoD, and Ds) react to t. Finally,
the pradP(t) gives a quantitative information about how many RBAC constraints related
to permission faults (i.e., PR, ≤I) react to t.
Based on the values of AD, the RBAC Applicability Degree (RAP(t)) is calculated. The

RAP(t) value is a single quantitative attribute which summarizes the relevance of a single
test case t to one policy P by summing the four applicability degrees.

RAP(t) = padP(t) + asadP(t) + acadP(t) + pradP(t) (5)

However, since test similarity is calculated for pairs of test cases, we also defined
the RBAC Applicability Value (AppValue) which sums the applicability degrees of test
cases (Eq. 6).

AppValue(P, ti, tj) = RAP(ti) + RAP(tj) (6)

A priority value (PriorityValue) is calculated to weight the pairwise relevance of two test
cases. This PriorityValue is a constant number α, β , γ , or δ defined based on the padP(ti)
and padP(tj) values. These α, β , γ , and δ constants are defined by the user, such that
α > β > γ > δ. The α is given for pairs of test cases where all test inputs are applicable,
and δ is given if none of test inputs are applicable to the constraints of the RBAC policy P.
The values 3, 2, 1 and 0 are suggested by Bertolino et al. (2015). Equation 7 shows the
formula which derivates the PriorityValue

PriorityValue(P, ti, tj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α if (padP(ti) = padP(tj) = 1)
β if (padP(ti) XOR padP(tj))

γ if (0 < padP(ti), padP(tj) < 1)
δ otherwise

(7)

The RBAC Similarity (drs) of a pair of test cases consists of the sum of the dsd,
AppValue and PriorityValue values, if dsd(ti, tj) �= 0, as shown in Eq. 8. The RBAC sim-
ilarity was designed based on Bertolino et al. (2015) approach for similarity testing for
XACML policies.

drs(P, ti, tj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if dsd(ti, tj) = 0
dsd(ti, tj)+
AppValue(P, ti, tj)+
PriorityValue(P, ti, tj) otherwise

(8)

As an example, the applicability degrees of each test case presented in Listing 2, given
the RBAC policy in Listing 1, are presented in Table 4.
As shown in Table 4, all test inputs of t3 are applicable to at least one RBAC constraint

and test case t3 has the greatest RBAC applicability degree. Test case t2 has the second
greatest value, followed by t1 and t0 with the same applicability degree. Afterwards, the
simple dissimilarity, RBAC application value, and priority value are calculated for all pairs

Table 4 RBAC applicability degree of each test case

Test case ti padP(ti) asadP(ti) acadP(ti) pradP(ti) RA(ti)

t0 0.77 0.0 0.0 0.0 0.77

t1 0.77 0.0 0.0 0.0 0.77

t2 0.77 1.0 0.0 0.0 1.77

t3 1.0 1.0 1.0 0.0 3.0

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 16 of 37

of test cases. All these values are joined in the RBAC similarity (drs) that is calculated for
each pair of test cases, as presented in Table 5.

3.2 Test prioritization algorithm

Given the similarity of all pairs of test cases, a test prioritization algorithm has to be used
for scheduling test cases execution. The pseudocode of the test prioritization algorithm
used in this study is presented in Algorithm 1. Essentially, the test prioritization algorithm
iterates a similarity matrix calculated using a similarity function dx, from themost distinct
pairs of test cases to the less dissimilar ones of a test suite S. Given each pairwise similarity,
the longest test case is included in the list of prioritized test cases. Otherwise, the shortest
is included, if not previously included. This process is performed until all test cases of S
are included in L, which stands for the prioritized test suite.

Algorithm 1: Algorithm for Test Prioritization

Input: S = {t1, t2, . . . , tn} // List of n test cases

Output: L // List of n prioritized test cases

1 L ←[] ; Scopy ← clone(S)
2 Generate the similarity matrix dx[n] [n − 1] from S
3 foreach ta, tb ∈ S where nextMaxdec(dx[a] [b])
4 if (longest(ta, tb) ∈ Scopy)
5 L.add(longest(ta, tb)) ; Scopy.remove(longest(ta, tb)) ;
6 else (shortest(ta, tb) ∈ Scopy)
7 L.add(shortest(ta, tb)) ; Scopy.remove(shortest(ta, tb)) ;
8 end foreach
9 return L

Using the RBAC similarity and the test suite shown in Listing 2, the similarity matrix
shown in Eq. 9 is obtained.

t0 t1 t2 t3

SM =
t0
t1
t2
t3

⎡

⎢
⎢
⎢
⎣

0 4.55 5.55 7.77
0 0 5.55 7.77
0 0 0 8.77
0 0 0 0

⎤

⎥
⎥
⎥
⎦

(9)

Using Algorithm 1, the first most dissimilar pair of test cases (t2, t3) is selected and
the longest test case t3 is added to L. Afterwards, test case t0 is included since it is the

Table 5 RBAC similarity of each pair of test cases

Pairs (ti , tj) dsd(ti , tj) AppValue(P, ti , tj) PriorityValue(P, ti , tj) drs(P, ti , tj)

(t0, t1) 2.0 1.55 1.0 4.55

(t0, t2) 2.0 2.55 1.0 5.55

(t0, t3) 2.0 3.77 2.0 7.77

(t1, t2) 2.0 2.55 1.0 5.55

(t1, t3) 2.0 3.77 2.0 7.77

(t2, t3) 2.0 4.77 2.0 8.77

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 17 of 37

longest test case from the next most dissimilar pair (t0, t3). The last pair considered is
(t1, t3) and t1 is the next to be included. The prioritization ends with test case t2, from
pair (t0, t2), scheduled at the end of the test execution. Listing 3 shows the L resulting test
suite prioritized according to RBAC similarity.

1 1000 − AC(u1, r1)/granted → 1100 − AS(u2, r1)/granted → 1110 − AC(u2, r1)/denied → 1110 / / t3
2 1000 − DS(u2, r1)/denied → 1000 / / t0
3 1000 − AS(u2, r1)/granted → 1010 − AC(u2, r1)/granted → 1011 − DS(u2, r1)/granted → 1000 / / t1
4 1000 − DS(u1, r1)/granted → 0000 − DS(u1, r1)/denied → 1000 / / t2
Listing 3 Test cases example - RBAC similarity

4 Experimental evaluation
According to Damasceno et al. (2016), a larger number of test cases tends to be generated
regardless the FSM-based testing methods for RBAC systems. Thus, the higher the num-
ber of states and transitions of FSM(P) increase, the greater the test suites are concerning
the number of resets, total test suite length, and average test case length. Thus, additional
steps become necessary to make software testing more cost-effective.
We proposed RBAC similarity to fill this research gap and designed an experiment to

evaluate the cumulative effectiveness and the APFD of the RBAC similarity and compare
to simple dissimilarity and random prioritization using test suites generated from FSM-
based testing methods on RBAC systems. An schematic overview of this experiment is
presented in Fig. 6.
Fifteen test suites were taken from a previous study (Damasceno et al. 2016) where

test characteristics (i.e., number of resets, test suite length, and avg. test case length)
and effectiveness were analyzed based on the FSM(P) characteristics (i.e., numbers of
states, and transitions). These test suites were generated from five RBAC policies spec-
ified as FSM(P) models using the RBAC-BT software (Damasceno et al. 2016) and
implementations of the W (Chow 1978), HSI (Petrenko and Bochmann 1995), and SPY

Fig. 6 Comparison of test prioritization techniques - schematic overview

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 18 of 37

(Simão et al. 2009) methods. Table 6 shows a summary of the five RBAC policies and the
total number of RBAC mutants.
The RBAC-BT1 is an FSM-based testing tool designed by Damasceno et al. (2016) to

support FSM-based testing of RBAC systems and the automatic generation of FSM(P)

models and RBAC mutants. RBAC-BT was extended to support test prioritization using
RBAC similarity and simple dissimilarity. Due to the high number of pairwise compar-
isons required to perform test prioritization, a time constraint of 24 hours for each test
prioritization procedure was defined. Procedures with a duration above this limit were
canceled and random subsets of the complete test suites, named as subtest suite, were
taken for prioritization.
On preliminary experiments, the prioritization of the test suites of policies P03, P04,

P05 took more than 24 hours.
Thus, subtest suites of the aforementioned policies containing 2528 test cases were ran-

domly generated 30 times. The number 2528 was taken from the largest complete test
suite with test prioritization duration below the 24 hours threshold, the W test suite of
policy P02. Table 7 shows the characteristics of the FSM(P) models and their respective
complete test suites.
The six complete test suites were prioritized using each test prioritization, and the

cumulative effectiveness of these test suites was measured in twenty-one parts. After-
wards, the cumulative effectiveness was used to calculate the APFD of each scenario. The
APFD value was calculated using Eq. 1, Fi as the number of faults detected by one test
fragment i and l as the number of RBAC mutants. Random prioritization was performed
10 times to the 30 random subtest suites of P03, P04 and P05.
Using the R statistical package, we calculated mean APFD with confidence interval (CI)

of 95% to all test scenarios and performed the nonparametric Wilcoxon matched-pairs
signed ranks test to verify if the RBAC similarity reached different APFDs compared to
simple dissimilarity and random prioritization with a confidence interval of 95%. As the
alternative hypothesis, we considered that RBAC similarity performed better (i.e., greater
mean cumulative effectiveness) than the other criteria.
To complement hypothesis tests, we analyzed the effect size by computing unstan-

dardized (i.e., median and mean differences) and standardized measures (i.e., Cohen’s d
Hedges g (Kampenes et al. 2007) and Vargha-Delaney’s Â12 (Arcuri and Briand 2011))
using R and the effsize package (Torchiano 2017).

4.1 Analysis of the complete test suites

In this section, we discuss the results of the experiments comparing RBAC similarity,
simple and random prioritization based on complete test suites. The mean cumulative
effectiveness for P01 and P02 are respectively shown in Tables 8 and 9, and Figs. 7 and 8

Table 6 RBAC policies characteristics

ID RBAC policy name U R Su Du Sr Dr SSoD DSoD Mutants

P01 01_Masood2010Example1 2 1 • • • • 9

P02 02_SeniorTraineeDoctor 2 2 • • • • • 17

P03 03_ExperiencePointsv2 2 4 • • • 11

P04 04_users11roles2v2 11 2 • • • 28

P05 05_Masood2009P2v2 2 5 • • • • • 48

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 19 of 37

Ta
b
le

7
FS
M

(P
)
an
d
te
st
ch
ar
ac
te
ris
tic
s

FS
M
ch
ar
ac
te
ris
tic
s

Te
st
su
ite

le
ng

th
N
um

be
ro

fr
es
et
s

A
vg
.t
es
tc
as
e
le
ng

th

ID
St
at
es

Tr
an
si
tio

ns
W

H
SI

SP
Y

W
H
SI

SP
Y

W
H
SI

SP
Y

P0
1

8
64

12
40

75
3

54
2

28
5

17
6

93
3.
35
0

3.
27
8

4.
82
7

P0
2

21
33
6
n

14
70
4

82
38

58
41

25
28

14
08

75
1

4.
81
6

4.
85
0

6.
77
7

P0
3

20
3

64
96

77
60
74

33
35
50

21
37
99

11
95
86

51
45
1

24
00
1

5.
48
9

5.
48
2

7.
90
7

P0
4

48
5

42
68
0

13
12
56
62

60
85
63
3

23
92
98
1

22
36
38
8

99
34
92

13
87
66

4.
86
9

5.
12
5

16
.2
4

P0
5

85
7

34
28
0

70
86
32
5

29
70
52
8

17
35
81
8

83
56
00

35
38
36

15
94
63

7.
48
0

7.
39
5

9.
88
5

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 20 of 37

Ta
b
le

8
C
um

ul
at
iv
e
ef
fe
ct
iv
en

es
s
of

th
e
P0
1
co
m
pl
et
e
te
st
su
ite

s

Pe
rc
en

t
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

P0
1
+
W

Si
m
pl
e

0.
00

0.
50

0.
50

0.
75

0.
75

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
75

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
57

0.
91

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
1
+
H
SI

Si
m
pl
e

0.
00

0.
00

0.
50

0.
50

0.
50

0.
50

0.
50

0.
50

0.
75

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
5

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

Ra
nd

om
0.
26

0.
78

0.
87

0.
93

0.
97

0.
98

0.
98

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
1
+
SP
Y

Si
m
pl
e

0.
0

0.
5

0.
5

0.
5

0.
5

0.
5

0.
5

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

1.
0

RB
A
C

0.
00

0.
75

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
03
3

0.
75
0

0.
91
7

0.
94
2

0.
95
8

0.
97
5

0.
99
2

0.
99
2

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

1.
00
0

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 21 of 37

Ta
b
le

9
C
um

ul
at
iv
e
ef
fe
ct
iv
en

es
s
of

th
e
P0
2
co
m
pl
et
e
te
st
su
ite

s

Pe
rc
en

t
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

P0
2
+
W

Si
m
pl
e

0.
29

0.
43

0.
71

0.
71

0.
71

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
86

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
79

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
2
+
H
SI

Si
m
pl
e

0.
14

0.
57

0.
57

0.
71

0.
71

0.
71

0.
71

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
43

0.
71

0.
71

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
73

0.
95

0.
99

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
2
+
SP
Y

Si
m
pl
e

0.
57

0.
57

0.
71

0.
71

0.
71

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

0.
86

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
86

0.
86

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
71

0.
94

0.
97

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 22 of 37

Fig. 7 Cumulative effectiveness for P01 with error bars (CI=95%). a P01 + W. b P01 + HSI. c P01 + SPY

with error bars calculated with a confidence interval of 95%. At the end of this section,
we also show the mean APFD and the results of the Wilcoxon matched-pairs signed
ranks test.
In most of the cases, there was no statistically significant difference between the prior-

itization algorithms in the P01 and P02 scenarios. The P01 + HSI scenario was the only
exception where RBAC similarity reached an APFD higher than simple dissimilarity and
random prioritization. In the five remaining scenarios, RBAC similarity performed with-
out significant difference compared to at least one of the methods. The mean APFD for
each scenario are shown in Table 10 with their respective confidence intervals of 95%
subscripted.
Table 11 shows the results of theWilcoxonmatched-pairs signed ranks test using a con-

fidence interval of 95% to the mean cumulative effectiveness. In this case, we compared
RBAC similarity to simple and random prioritization and random prioritization to simple
dissimilarity. Significant results are highlighted in bold.
Table 11 corroborates to the finding of Fig. 7 and Table 10 where RBAC similarity had

a statistically significant difference compared to the other criteria in P01 + HSI scenario;

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 23 of 37

Fig. 8 Cumulative effectiveness for P02 with error bars (CI=95%). a P02 + W. b P02 + HSI. c P02 + SPY

and random prioritization reached significantly different APFDs compared to simple
dissimilarity in the all scenarios.

4.2 Analysis of the subtest suites

Since test prioritization for P03, P04 and P05 was too expensive, we considered 30 random
subtest suites with 2528 test cases. Random prioritization was run 10 times for each of
the 30 subtest suites.

Table 10Mean APFD of the complete test suites with confidence interval of 95%

Scenario RBAC Simple Random

P01 + W 0.964 0.857 0.951±0.00518

P01 + HSI 0.952 0.726 0.917±0.00933

P01 + SPY 0.917 0.786 0.908±0.00814

P02 + W 0.969 0.874 0.965±0.00254

P02 + HSI 0.922 0.779 0.960±0.00369

P02 + SPY 0.963 0.827 0.958±0.00382

Statistically significant, or the highest values given the confidence interval of 95% are captured in bold

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 24 of 37

Table 11Wilcoxon matched-pairs signed ranks test (CI=95%) for P01 and P02

P01 P02

Hypothesis W HSI SPY W HSI SPY

RBAC > Simple 0.0284 0.0030 0.0131 0.0267 0.0001 0.0002

RBAC > Random 0.0907 0.0071 0.0538 0.1855 0.9498 0.2919

Random > Simple 0.0290 0.0045 0.0104 0.0272 0.0002 0.0002

Statistically significant, or the highest values given the confidence interval of 95% are captured in bold

The mean cumulative effectiveness of P03, P04, and P05 are respectively presented in
Tables 12, 13, and 14. Figs. 9, 10, and 11 show the mean cumulative effectiveness with
error bars calculated using a confidence interval of 95%.
In the P03 test scenarios, the first 5 to 10% of the W, HSI, and SPY subtest suites (i.e., a

subset of 125 to 250 test cases) became sufficient to reach the maximum effectiveness. All
test prioritization approaches presented similar results and no statistical significance was
found between RBAC and the other approaches. In scenarios like this, test minimization
techniquesmay bemore cost-effective than test prioritization due to itsO(n2) complexity.
In the P04 scenario, the benefits of RBAC similarity started to become more visible and

statistically significant, as shown in Fig. 10 and Table 13. There was one exception where
no significant difference was obtained. In the P04 +W scenario, theWmethod generated
an extremely large test suite and, to enable test prioritization, we selected random subtest
suites containing 2528 test cases. This random selection may have reduced test diversity.
In the other scenarios, P04 + HSI and P04 + SPY, we found that the cumulative effective-
ness of the RBAC similarity had a statistically significant difference compared to the other
methods.
The mean cumulative effectiveness for the P05 test scenarios are presented in Fig. 11

and Table 14. In the P05 scenario, RBAC similarity, simple dissimilarity, and random pri-
oritization clearly had statistically different cumulative effectivenesses. Respectively, 65%
of the W and HSI, and 80% of the SPY subtest suites prioritized using RBAC similarity
became capable of reaching the highest effectivenesses. RBAC similarity presented a sig-
nificantly greater cumulative effectiveness compared to random prioritization and simple
dissimilarity.
To the P03, P04 and P05, we also calculated the mean APFD based on the cumulative

effectiveness of all runs of the 30 random subtest suites. The mean APFD of each test
scenario with confidence interval of 95% is shown in Table 15. The highest APFD values
are highlighted in bold.
In P03 scenario, the fault distribution along the FSM(P03) may have benefited fault

detection and all methods performed similarly. In P04 scenario, there was only one case
where RBAC similarity did not work well and no statistically significant difference was
found (i.e., P04 + W). Regarding simple dissimilarity, it did not reach an APFD higher
than random prioritization. At last, in all P05 scenarios, we found statistically significant
differences between RBAC, simple and random prioritization. Table 16 shows the results
of the Wilcoxon matched-pairs signed ranks test in the test scenarios of policies P03, P04
and P05. Significant results are highlighted in bold.
The analysis of the mean APFD and the confidence intervals of the subtest suites

indicated that RBAC similarity performed better than simple dissimilarity and random
prioritization in some scenarios. In addition to assessing whether an algorithm performs

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 25 of 37

Ta
b
le

12
C
um

ul
at
iv
e
ef
fe
ct
iv
en

es
s
of

th
e
P0
3
su
bt
es
ts
ui
te
s

Pe
rc
en

t
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

P0
3
+
W

Si
m
pl
e

0.
87

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
95

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
88

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
3
+
H
SI

Si
m
pl
e

0.
82

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
82

0.
85

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
83

0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P0
3
+
SP
Y

Si
m
pl
e

0.
86

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

RB
A
C

0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Ra
nd

om
0.
89

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 26 of 37

Ta
b
le

13
C
um

ul
at
iv
e
ef
fe
ct
iv
en

es
s
of

th
e
P0
4
su
bt
es
ts
ui
te
s

Pe
rc
en

t
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

P0
4
+
W

Si
m
pl
e

0.
58

0.
58

0.
60

0.
61

0.
61

0.
62

0.
63

0.
64

0.
64

0.
65

0.
66

0.
66

0.
67

0.
68

0.
68

0.
68

0.
69

0.
69

0.
70

0.
70

0.
71

RB
A
C

0.
58

0.
59

0.
59

0.
59

0.
63

0.
63

0.
63

0.
63

0.
63

0.
63

0.
63

0.
64

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

0.
71

Ra
nd

om
0.
57

0.
59

0.
59

0.
60

0.
61

0.
62

0.
62

0.
63

0.
64

0.
64

0.
65

0.
66

0.
67

0.
67

0.
68

0.
68

0.
69

0.
69

0.
70

0.
70

0.
71

P0
4
+
H
SI

Si
m
pl
e

0.
58

0.
59

0.
61

0.
62

0.
63

0.
65

0.
65

0.
66

0.
67

0.
68

0.
70

0.
71

0.
71

0.
72

0.
73

0.
74

0.
75

0.
76

0.
77

0.
77

0.
78

RB
A
C

0.
58

0.
58

0.
61

0.
61

0.
61

0.
61

0.
62

0.
76

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

Ra
nd

om
0.
57

0.
59

0.
60

0.
62

0.
63

0.
64

0.
65

0.
66

0.
68

0.
69

0.
70

0.
71

0.
72

0.
73

0.
73

0.
74

0.
75

0.
76

0.
76

0.
77

0.
78

P0
4
+
SP
Y

Si
m
pl
e

0.
58

0.
62

0.
66

0.
69

0.
72

0.
74

0.
76

0.
79

0.
80

0.
82

0.
84

0.
85

0.
87

0.
88

0.
90

0.
90

0.
91

0.
93

0.
95

0.
98

0.
99

RB
A
C

0.
63

0.
72

0.
87

0.
93

0.
97

0.
97

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
98

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

Ra
nd

om
0.
59

0.
65

0.
71

0.
75

0.
79

0.
82

0.
85

0.
87

0.
90

0.
91

0.
92

0.
94

0.
95

0.
96

0.
96

0.
97

0.
98

0.
98

0.
98

0.
99

0.
99

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 27 of 37

Ta
b
le

14
C
um

ul
at
iv
e
ef
fe
ct
iv
en

es
s
of

th
e
P0
5
su
bt
es
ts
ui
te
s

Pe
rc
en

t
1

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10
0

P0
5
+
W

Si
m
pl
e

0.
62

0.
72

0.
75

0.
76

0.
77

0.
79

0.
81

0.
82

0.
82

0.
82

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

RB
A
C

0.
69

0.
77

0.
80

0.
81

0.
83

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

0.
85

0.
85

0.
85

0.
85

0.
85

0.
85

Ra
nd

om
0.
62

0.
73

0.
76

0.
79

0.
80

0.
81

0.
82

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

0.
85

P0
5
+
H
SI

Si
m
pl
e

0.
60

0.
71

0.
73

0.
74

0.
75

0.
76

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

RB
A
C

0.
66

0.
75

0.
77

0.
79

0.
80

0.
81

0.
81

0.
82

0.
83

0.
83

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

Ra
nd

om
0.
61

0.
71

0.
74

0.
75

0.
77

0.
78

0.
79

0.
80

0.
80

0.
81

0.
81

0.
82

0.
82

0.
83

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

P0
5
+
SP
Y

Si
m
pl
e

0.
65

0.
73

0.
75

0.
76

0.
78

0.
80

0.
82

0.
82

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

RB
A
C

0.
76

0.
80

0.
83

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

0.
85

0.
85

0.
85

Ra
nd

om
0.
64

0.
74

0.
77

0.
79

0.
81

0.
82

0.
82

0.
83

0.
83

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
84

0.
85

0.
85

0.
85

0.
85

0.
85

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 28 of 37

Fig. 9 Cumulative effectiveness for P03 with error bars (CI=95%). a P03 + W. b P03 + HSI. c P03 + SPY

statistically better than another, it is crucial to measure the magnitude of such improve-
ment. To analyze such aspect, effect size measures are required (Kampenes et al. 2007;
Arcuri and Briand 2011; Wohlin et al. 2012).

4.2.1 Effect size to subtest suites

Effect size measures allow for quantifying the difference (i.e., magnitude of the improve-
ment) between two groups (Wohlin et al. 2012). Kampenes et al. (2007) found that
only 29% of software engineering experiments report some effect size measure. Thus, to
improve our analysis, we also evaluated the effect that one test prioritization method had
on the APFD compared with the other methods.
There are two main classes of effect size: (i) unstandardized, which are dependent from

the unit of measurement; and (ii) standardized, which are independent from the eval-
uation criteria measurement units. For each pair of different prioritization method, we
computed five different measures: two unstandardized (i) mean and (ii) median differ-
ences; and three standardized (iii) Cohen’s d (Cohen 1977), (iv) Hedges’ g (Hedges 1981),
and (v) Vargha-Delaney’s Â12 (Vargha and Delaney 2000).

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 29 of 37

Fig. 10 Cumulative effectiveness for P04 with error bars (CI=95%). a P04 + W. b P04 + HSI. c P04 + SPY

Mean and median differences, Cohen’s d, and Hedges’ g are presented as often referred
metrics in the software engineering literature (Kampenes et al. 2007). Cohen’s d, and
Hedges’ g are computed based on the mean difference and an estimate of population
standard deviation σpop and compared using standard conventions (Cohen 1992).
Vargha-Delaney (VD) Â12 is an effect size measure based on stochastic superiority that

denotes the probability of a method outperform another (Vargha and Delaney 2000). If
both methods are equivalent then Â12 = 0.5. An effect size Â12 > 0.5 means that the
treatment method has higher probability of achieving a better performance than the con-
trol method, otherwise vice-versa. Vargha-Delaney’s Â12 is recommended by Arcuri and
Briand (2011) as a simple and intuitive measure of effect size for assessing randomized
algorithms in software engineering research. Table 17 shows the pairwise comparison of
the three test prioritization methods. The metrics presented can also be used in future
research (e.g., meta-analysis (Kampenes et al. 2007)).
We did not compute the effect size to P01 and P02 due to the deterministic nature of

RBAC and simple prioritizations and its consequent σpop = 0. The analysis of effect size
corroborated to the mean APFDs and Wilcoxon matched-pairs signed ranks tests and
RBAC similarity had good results in P04+HSI, P04+SPY, and all P05 scenarios.

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 30 of 37

Fig. 11 Cumulative effectiveness for P05 with error bars (CI=95%). a P05 + W. b P05 + HSI. c P05 + SPY

We found differences of mediummagnitude between RBAC compared with simple and
random prioritizations in P04+HSI; and large magnitude in P04+SPY and all P05 scenar-
ios. There was only one case (i.e., P03+HSI) where RBAC prioritization did not outrun
the other methods. In the other scenarios, we found negligible to medium differences
between the techniques. Thus, the following order was observed, from the method with
the lowest to the highest APFDs, Simple ≺ Random ≺ RBAC.

Table 15Mean APFD of the subtest suites with confidence interval of 95%

Scenario APFDRBAC APFDSimple APFDRandom

P03 + W 0.9732±0.0016 0.9700±0.0019 0.9704±0.0005

P03 + HSI 0.9607±0.0027 0.9675±0.0016 0.9665±0.0007

P03 + SPY 0.9746±0.0010 0.9694±0.0019 0.9710±0.0005

P04 + W 0.6466±0.0110 0.6417±0.0129 0.6385±0.0036

P04 + HSI 0.7062±0.0164 0.6770±0.0166 0.6757±0.0047

P04 + SPY 0.9222±0.0073 0.7943±0.0110 0.8561±0.0033

P05 + W 0.8113±0.0025 0.7888±0.0032 0.7977±0.0011

P05 + HSI 0.7973±0.0055 0.7729±0.0052 0.7779±0.0019

P05 + SPY 0.8192±0.0027 0.7948±0.0039 0.8012±0.0012

Statistically significant, or the highest values given the confidence interval of 95% are captured in bold

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 31 of 37

Ta
b
le

16
W
ilc
ox
on

m
at
ch
ed

-p
ai
rs
si
gn

ed
ra
nk
s
te
st
(C
I=
95
%
)f
or

P0
3,
P0
4
an
d
P0
5

P0
3

P0
4

P0
5

H
yp
ot
he

si
s

W
H
SI

SP
Y

W
H
SI

SP
Y

W
H
SI

SP
Y

RB
A
C

>
Si
m
pl
e

0.
50
00
00

0.
97
72
50

0.
50

0.
14
78
76

0.
00

74
48

0.
00

00
48

0.
00

00
71

0.
00

00
71

0.
00

00
48

RB
A
C

>
Ra
nd

om
0.
50
00
00

0.
70
80
59

0.
18
55
47

0.
03

50
99

0.
00

40
14

0.
00

00
48

0.
00

00
48

0.
00

00
48

0.
00

00
48

Ra
nd

om
>
Si
m
pl
e

0.
50
00
00

0.
89
93
79

0.
50
00
00

0.
99
91
47

0.
94
84
64

0.
00

00
48

0.
00

01
82

0.
03

80
77

0.
00

04
77

St
at
is
tic
al
ly
si
gn

ifi
ca
nt
,o
rt
he

hi
gh

es
tv
al
ue

s
gi
ve
n
th
e
co
nf
id
en

ce
in
te
rv
al
of

95
%
ar
e
ca
pt
ur
ed

in
bo

ld

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 32 of 37

Ta
b
le

17
Pa
irw

is
e
co
m
pa

ris
on

am
on

g
th
e
m
et
ho

ds
w
ith

re
sp
ec
tt
o
th
e
A
PF
D

P0
3

P0
4

P0
5

A
lt.
H
yp
ot
he

si
s

In
fo

W
H
SI

SP
Y

W
H
SI

SP
Y

W
H
SI

SP
Y

RB
A
C
>
Ra
nd

om
M
ea
n
di
ff

0,
00
29

-0
,0
05
8

0,
00
36

0,
00
81

0,
03
05

0,
06
62

0,
01
37

0,
01
95

0,
01
8

M
ed

ia
n
di
ff

0,
00
6

-0
,0
06

0,
00
6

0,
01
1

0,
01
74

0,
06
96

0,
01
19

0,
01
81

0,
01
92

C
oh

en
’s
d

0,
65
08

-0
,8
07
5

1,
24
79

0,
27
22

0,
69
91

3,
21
09

1,
94
2

1,
31
14

2,
38
87

H
ed

ge
s’
g

0,
64
93

-0
,8
05
6

1,
24
5

0,
27
16

0,
69
75

3,
20
36

1,
93
76

1,
30
84

2,
38
32

VD
’s
Â
12

0,
33
11

0,
73
3

0,
28
09

0,
41
64

0,
30
73

0,
02
83

0,
12
02

0,
17
94

0,
07
39

RB
A
C
>
Si
m
pl
e

M
ea
n
di
ff

0,
00
32

-0
,0
06
7

0,
00
52

0,
00
49

0,
02
92

0,
12
79

0,
02
26

0,
02
44

0,
02
44

M
ed

ia
n
di
ff

0,
00
6

0
0,
00
6

0,
00
55

0,
02
11

0,
13
46

0,
02
38

0,
01
97

0,
02
64

C
oh

en
’s
d

0,
67
26

-1
,1
26
9

1,
26
25

0,
15
21

0,
66
15

5,
09
93

2,
96
39

1,
70
59

2,
70
21

H
ed

ge
s’
g

0,
66
39

-1
,1
12
2

1,
24
61

0,
15
01

0,
65
29

5,
03
3

2,
92
54

1,
68
37

2,
66
7

VD
’s
Â
12

0,
67
72

0,
22
67

0,
79

0,
56
89

0,
69
33

1
0,
97
78

0,
90
67

0,
97
83

Ra
nd

om
>
Si
m
pl
e

M
ea
n
di
ff

0,
00
03

-0
,0
01

0,
00
15

-0
,0
03
2

-0
,0
01
3

0,
06
17

0,
00
89

0,
00
49

0,
00
64

M
ed

ia
n
di
ff

0
0,
00
6

0
-0
,0
05
5

0,
00
37

0,
06
5

0,
01
19

0,
00
16

0,
00
72

C
oh

en
’s
d

0,
06
62

-0
,1
69
8

0,
32
39

-0
,0
99
7

-0
,0
31
4

2,
15
23

0,
90
26

0,
30
52

0,
62
04

H
ed

ge
s’
g

0,
06
61

-0
,1
69
4

0,
32
32

-0
,0
99
5

-0
,0
31
3

2,
14
74

0,
90
05

0,
30
45

0,
61
9

VD
’s
Â
12

0,
51
81

0,
47
61

0,
58
25

0,
47
52

0,
51
46

0,
92
77

0,
75
54

0,
58
68

0,
67
7

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 33 of 37

5 Discussion
Recently, Cartaxo et al. (2011) and Bertolino et al. (2015) showed that similarity
functions can be helpful when it is necessary to prioritize exhaustive test suites
automatically generated for LTS models and XACML policies, respectively. In our
previous study (Damasceno et al. 2016), we found that, no matter what FSM-
based testing methods are applied to RBAC systems, when the number of users
and roles increase, larger test suites tend to be generated. Thus, specific domain
test criteria are required to optimize FSM-based testing for RBAC systems. To this
end, there are three main approaches: (i) Test minimization, (ii) Test selection, and
(iii) Test prioritization.
Unlike (i) test minimization and (ii) test selection, that may compromise fault detection

capability; (iii) test prioritization aims at finding an order of execution to an entire test
suite (i.e., without filtering out any test case) based on some test criteria (Yoo and Harman
2012). In this paper, we investigated the test prioritization for RBAC systems, and we
proposed the RBAC similarity.

5.1 RBAC similarity compared to the other criteria

Our results showed that RBAC similarity performed better than simple dissimi-
larity and random prioritization in some of the scenarios, especially those with
large FSM(P) models. To policies P01 and P02, we did not find statistically
significant differences between the test prioritization criteria in most of the sce-
narios. The only exception was to P01 + HSI, where a statistically significant
difference between RBAC similarity and the other criteria was found. The HSI
method reduces test dimensions by using harmonized state identifiers instead of
the characterization set (Petrenko and Bochmann 1995). In this scenario, the char-
acteristics of the HSI may have affected test diversity and, as a result, benefited
RBAC similarity.
Due to the large number of test cases generated from policies P03, P04, and P05, pri-

oritizing the complete test suites became infeasible. To overcome this issue, we opted to
apply test prioritization on random subtest suites.
To policy P03, all test prioritization approaches increased the cumulative effectiveness

to the maximum value yet at the first 5 to 10% and we did not find statistically significant
differences between them. Thus, the fault distribution along the FSM(P03) model bene-
fited fault detection and test prioritization. In scenarios like this, test minimization may
be more suitable than test prioritization, which has an O(n2) cost. However, as we high-
lighted earlier, there is a risk of reducing the capability of test suites detecting faults out
of the RBAC domain.
The benefits of the RBAC similarity became more evident in P04 and P05 scenarios,

the largest FSM(P) models. In policy P04, we found a statistically significant difference
between RBAC similarity to the subtest suites generated from HSI and SPY. The only
exception was the P04 + W scenario where the random selection of subtest suites may
have compromised test diversity.
In the P05 scenario, the RBAC similarity outperformed both test prioritization

criteria with statistically significant differences. The analysis of the mean APFD
values and effect size corroborate to the mean cumulative effectivenesses depicted
in Figs. 9 to 11.

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 34 of 37

5.2 Random prioritization vs. simple dissimilarity

Our results showed a statistically significant difference between random prioritization
and simple dissimilarity. In ten out of 15 scenarios, random prioritization presented
APFD significantly different and higher than simple dissimilarity. RBAC faults can be
exhibited across many different transitions of FSM(P) (Masood et al. 2010). Thus, test
diversity may not imply on higher APFD.

5.3 Practical feasibility

We found that RBAC similarity may not be feasible to large complete test suites, as seen
in scenarios P03, P04 and P05. TheO(n2) complexity is an inherent characteristic of most
test prioritization approaches (Elbaum et al. 2002), especially similarity testing, that is
also an all-to-all comparison problem (Zhang et al. 2017). However, RBAC similarity can
still be improved through (i) test minimization and/or (ii) parallel programming.
The RBAC applicability can be used in test minimization as requirements coverage

criteria to find test cases relevant to the constraints (i.e., requirements) of RBAC poli-
cies. Afterwards, RBAC similarity can be applied as we proposed. Thus, a significant test
cost reduction can be achieved, but at the risk of reducing the fault-detection capability
(Yoo and Harman 2012).
Recent studies have proposed parallel algorithms to efficiently calculate similarity

matrices for mathematical modelling of heterogeneous hardware (Rawald et al. 2015) and
ontology mapping (Gîză-Belciug and Pentiuc 2015). However, to the best of our knowl-
edge, they have never been investigated for similarity testing. RBAC similarity as a test
minimization criterion and parallel algorithms to calculate similarity matrices for test pri-
oritization could boost up similarity testing but this is out of the scope of this study and
left as future work.

6 Threats to validity
Conclusion Validity: Threats to conclusion validity relate with the ability draw correct
conclusions about the relation between the treatment and the outcomes. To mitigate this,
we used the Wilcoxon matched-pairs signed ranks test to verify if the RBAC similarity
reached different APFDs compared to simple dissimilarity and random prioritization with
a confidence interval of 95%. We also computed the mean APFD with a confidence inter-
val of 95% and five effect size measures to quantify the difference between the methods.
The statistical analysis were performed using the R statistical package and the effsize
package (Torchiano 2017). The R scripts, input and output statistical data are included in
the RBAC-BT repository.
Internal Validity: Threats to internal validity are related with influences that can affect

independent variables with respect to causality. They threat conclusions about a possible
causal relationship between treatment and outcome. Tomitigate this threat, random tasks
(i.e., subtest suite generation and random prioritization) were repeatedly performed to
avoid results obtained by chance. Most of artifacts used in this work were reused from the
lab package of our previous study (Damasceno et al. 2016).
Construct Validity: Construct validity concerns with generalizing outcomes to the

concept or theory behind the experiment. We used first-order mutants from the RBAC
fault domain (Masood et al. 2009) to simulate simple faults and evaluate the effective-
ness of each prioritization criteria. Mutation analysis is a common assessment approach

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 35 of 37

of software testing investigations (Jia and Harman 2011). Other RBAC fault models could
be used in this experiment, such as malicious faults (Masood et al. 2009) and probabilistic
models of fault coverage (Masood et al. 2010). These fault models could be used to anal-
yse RBAC similarity testing from a perspective of faults of different nature, but they were
left as future work. Moreover, despite the relatively low number of faults, the RBAC fault
model is still representative to functional faults of RBAC systems (Masood et al. 2009).
External Validity: It concerns with the generalization of the outcomes to other

scenarios. To mitigate this threat, we included test suites generated from three different
test generation methods and RBAC policies with different characteristics.

7 Conclusions
Essentially, the RBAC model reduces the complexity of security management routines by
grouping privileges through roles which can be assigned to users and activated in sessions.
Access control testing is one important activity during the development of RBAC systems
since implementation mistakes may lead to security breaches. In this context, previous
studies have shown that FSM-based testing can be effective at detecting RBAC faults,
but very expensive. Thus, additional steps become necessary to make RBAC testing more
feasible and less costly.
Test case prioritization comes as a solution to this problem and it aims at finding an

ordering for test cases execution to maximize some test criteria. Similarity testing is a
variant of test case prioritization which has been investigated under the XACML and LTS
domains and enabled to find better orders for test cases execution. In this paper we intro-
duce a test prioritization technique named RBAC similarity which uses the dissimilarity
between pairs of test cases and their pairwise applicability to the RBAC policy under
test (i.e., the relevance of these test cases to the RBAC constraints) as test prioritization
criteria.
Our RBAC similarity approach was experimentally evaluated and compared with sim-

ple dissimilarity and random prioritization as baselines. The obtained results pointed out
that RBAC similarity improved the mean cumulative effectiveness and the APFD and
enable to reach themaximum effectiveness of the test suites at a faster rate with significant
difference in most of the cases. In some scenarios, prioritizing HSI and SPY test suites
with RBAC similarity resulted on better APFD values than applying the technique to W
test suites. The characteristics of the test cases generated from HSI and SPY favoured the
similarity testing algorithms while random selection applied to complete test suites gener-
ated fromW negatively impacted test prioritization using similarity functions. Moreover,
random prioritization also outperformed simple dissimilarity in most of the cases. We
analyze our data using Wilcoxon matched-pairs signed ranks test and error bars with
CI=95%, and five effect sizemetrics (i.e., mean andmedian differences, Cohen’s d, Hedges’
g and Vargha-Delaney’s Â12) and found statistically significant in some scenarios.
All test artifacts (i.e., RBAC-BT tool, test suites, test results, RBAC policies, and sta-

tistical data) are available online 2 and can be used to replicate, verify and validate this
experiment. As future work, we want to investigate alternative algorithms for ordering
test cases, such as algorithms using total information for test prioritization, other fault
models, such as simulated malicious faults and probabilistic fault models. We also intend
to investigate the usage of RBAC similarity as a requirements coverage criterion for test
minimization and as a fitness function in search-based software testing (McMinn 2004).

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 36 of 37

Endnotes
1 https://github.com/damascenodiego/rbac-bt/
2 https://github.com/damascenodiego/rbac-bt

Acknowledgements
We acknowledge the help from all the LabES’s members (Software Engineering Laboratory) at the University of Sao Paulo
(USP) for their valuable comments. We also thank the reviewers for all valuable comments and suggestions to this study.

Funding
Carlos Diego Nascimento Damasceno’s research project was supported by the National Council for Scientific and
Technological Development (CNPq), process number 132249/2014-6.

Authors’ contributions
CDND designed and conducted the experiment, adapted the RBAC-BT tool and analyzed the results. PCM and AS
supported the validation of the experiment protocol and analysis of results. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 March 2017 Accepted: 20 December 2017

References
Andrews JH, Briand LC, Labiche Y, Namin AS (2006) Using mutation analysis for assessing and comparing testing

coverage criteria. IEEE Trans Softw Eng. 32(8):608–624. doi:10.1109/TSE.2006.83
ANSI (2004) Role based access control. Technical report, American National Standards Institute, Inc. ANSI/INCITS 359-2004
Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in software

engineering. In: Proceedings of the 33rd International Conference on Software Engineering. ICSE ’11. ACM, New York,
NY, USA. pp 1–10. doi: 10.1145/1985793.1985795 http://doi.acm.org/10.1145/1985793.1985795

Ben Fadhel A, Bianculli D, Briand L (2015) A comprehensive modeling framework for role-based access control policies.
J Syst Softw. 107(C):110–126. doi:10.1016/j.jss.2015.05.015

Bertolino A, Daoudagh S, Kateb DE, Henard C, Traon YL, Lonetti F, Marchetti E, Mouelhi T, Papadakis M (2015) Similarity
testing for access control. Inf Softw Technol. 58:355–372. doi:10.1016/j.infsof.2014.07.003

Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A (2005) Model-Based Testing of Reactive Systems: Advanced
Lectures (Lecture Notes in Computer Science). Springer, Secaucus, NJ, USA

Cartaxo EG, Machado PDL, Neto FGO (2011) On the use of a similarity function for test case selection in the context of
model-based testing. Softw Test Verif Reliab. 21(2):75–100. doi:10.1002/stvr.413

Chow TS (1978) Testing software design modeled by finite-state machines. IEEE Trans Softw Eng. 4(3):178–187.
doi:10.1109/TSE.1978.231496

Cohen J (1977) Statistical Power Analysis for the Behavioral Sciences. Revised edn.. Academic Press, New York.
doi:10.1016/B978-0-12-179060-8.50001-3. https://www.sciencedirect.com/science/article/pii/
B9780121790608500013

Cohen J (1992) A power primer. Psychol Bull. 112(1):155–159. doi:10.1037/0033-2909.112.1.155
Coutinho AEVB, Cartaxo EG, Machado PDdL (2014) Analysis of distance functions for similarity-based test suite reduction

in the context of model-based testing. Softw Qual J.1–39. doi:10.1007/s11219-014-9265-z
Damasceno CDN, Masiero PC, Simao A (2016) Evaluating test characteristics and effectiveness of fsm-based testing

methods on rbac systems. In: Proceedings of the 30th Brazilian Symposium on Software Engineering. SBES ’16. ACM,
New York, NY, USA. pp 83–92. doi:10.1145/2973839.2973849. http://doi.acm.org/10.1145/2973839.2973849

Elbaum S, Malishevsky AG, Rothermel G (2000) Prioritizing test cases for regression testing. SIGSOFT Softw Eng Notes.
25(5):102–112. doi:10.1145/347636.348910

Elbaum S, Malishevsky AG, Rothermel G (2002) Test case prioritization: A family of empirical studies. IEEE Trans Softw Eng.
28(2):159–182. doi:10.1109/32.988497

Endo AT, Simao A (2013) Evaluating test suite characteristics, cost, and effectiveness of fsm-based testing methods.
Inf Softw Technol. 55(6):1045–1062. doi:10.1016/j.infsof.2013.01.001

Fabbri SCPF, Delamaro ME, Maldonado JC, Masiero PC (1994) Mutation analysis testing for finite state machines.
In: Software Reliability Engineering, 1994. Proceedings., 5th International Symposium On. pp 220–229.
doi:10.1109/ISSRE.1994.341378

Felderer M, Zech P, Breu R, Büchler M, Pretschner A (2015) Model-based security testing: a taxonomy and systematic
classification. Softw Test Verif Reliab. doi:10.1002/stvr.1580

Ferraiolo DF, Kuhn RD, Chandramouli R (2007) Role-Based Access Control. 2nd edn. Artech House, Inc., Norwood, MA, USA
Gill A (1962) Introduction to the Theory of Finite State Machines. McGraw-Hill, New York
Gîză-Belciug F, Pentiuc SG (2015) Parallelization of similarity matrix calculus in ontology mapping systems. In: 2015 14th

RoEduNet International Conference - Networking in Education and Research (RoEduNet NER). pp 50–55.
doi:10.1109/RoEduNet.2015.7311827

Hedges LV (1981) Distribution theory for glass’s estimator of effect size and related estimators. J Educ Stat. 6(2):107–128.
doi:10.3102/10769986006002107. https://doi.org/10.3102/10769986006002107

https://github.com/damascenodiego/rbac-bt/
https://github.com/damascenodiego/rbac-bt
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1016/j.jss.2015.05.015
http://dx.doi.org/10.1016/j.infsof.2014.07.003
http://dx.doi.org/10.1002/stvr.413
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1016/B978-0-12-179060-8.50001-3
https://www.sciencedirect.com/science/article/pii/B9780121790608500013
https://www.sciencedirect.com/science/article/pii/B9780121790608500013
http://dx.doi.org/10.1037/0033-2909.112.1.155
http://dx.doi.org/10.1007/s11219-014-9265-z
http://dx.doi.org/10.1145/2973839.2973849
http://doi.acm.org/10.1145/2973839.2973849
http://dx.doi.org/10.1145/347636.348910
http://dx.doi.org/10.1109/32.988497
http://dx.doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1109/ISSRE.1994.341378
http://dx.doi.org/10.1002/stvr.1580
http://dx.doi.org/10.1109/RoEduNet.2015.7311827
http://dx.doi.org/10.3102/10769986006002107
https://doi.org/10.3102/10769986006002107

Damasceno et al. Journal of Software Engineering Research and Development (2018) 6:1 Page 37 of 37

Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Traon YL (2014) Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Trans Softw Eng.
40(7):650–670. doi:10.1109/TSE.2014.2327020. arXiv:1211.5451v1

Jang-Jaccard J, Nepal S (2014) A survey of emerging threats in cybersecurity. J Comput Syst Sci 80(5):973–993.
doi:10.1016/j.jcss.2014.02.005 Special Issue on Dependable and Secure Computing

Jia Y, Harman M (2011) An analysis and survey of the development of mutation testing. Softw Eng IEEE Trans.
37(5):649–678. doi:10.1109/TSE.2010.62

Kampenes VB, Dyb T, Hannay JE, Sjberg DIK (2007) A systematic review of effect size in software engineering
experiments. Inf Softw Technol. 49(11):1073–1086. doi:10.1016/j.infsof.2007.02.015

Masood A, Bhatti R, Ghafoor A, Mathur AP (2009) Scalable and effective test generation for role-based access control
systems. IEEE Trans Softw Eng. 35(5):654–668. doi:10.1109/TSE.2009.35

Masood A, Ghafoor A, Mathur AP (2010) Fault coverage of constrained random test selection for access control: A formal
analysis. J Syst Softw. 83(12):2607–2617. TAIC PART 2009 - Testing: Academic & Industrial Conference - Practice And
Research Techniques

McMinn P (2004) Search-based software test data generation: A survey: Research articles. Softw Test Verif Reliab.
14(2):105–156. doi:10.1002/stvr.v14:2

Mouelhi T, Kateb DE, Traon YL (2015) Chapter five - inroads in testing access control, Advances in Computers, vol. 99.
Elsevier. doi:10.1016/bs.adcom.2015.04.003 http://www.sciencedirect.com/science/article/pii/S0065245815000327

OASIS (2013) eXtensible Access Control Markup Language (XACML) Version 3.0. Technical report, Organization for the
Advancement of Structured Information Standards (OASIS). http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-
spec-os-en.pdf

OASIS (2014) XACML v3.0 Core and Hierarchical Role Based Access Control (RBAC) Profile Version 1.0. http://docs.oasis-
open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.0-rbac-v1.0-cs02.pdf

Ouriques JaFS (2015) Strategies for prioritizing test cases generated through model-based testing approaches.
In: Proceedings of the 37th International Conference on Software Engineering - Volume 2. ICSE ’15. IEEE Press,
Piscataway, NJ, USA. pp 879–882. http://dl.acm.org/citation.cfm?id=2819009.2819204

Petrenko A, Bochmann GV (1995) Selecting test sequences for partially-specified nondeterministic finite state machines.
In: Luo G (ed). 7th IFIP WG 6.1 International Workshop on Protocol Test Systems. IWPTS ’94. Chapman and Hall, Ltd.,
London, UK. pp 95–110. http://dl.acm.org/citation.cfm?id=236187.233118

Rawald T, Sips M, Marwan N, Leser U (2015) Massively parallel analysis of similarity matrices on heterogeneous hardware.
In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March
27th, 2015. CEUR-WS, Brussels. pp 56–62

Samarati P, de Vimercati SC (2001) Access Control: Policies, Models, and Mechanisms(Focardi R, Gorrieri R, eds.). Springer,
Berlin, Heidelberg. http://dx.doi.org/10.1007/3-540-45608-2_3

Simão A, Petrenko A, Yevtushenko N (2009) Generating Reduced Tests for FSMs with Extra States. In: Núñez M, Baker P,
Merayo MG (eds). Springer, Berlin, Heidelberg. pp 129–145. doi:10.1007/978-3-642-05031-2_9. http://dx.doi.org/10.
1007/978-3-642-05031-2_9

Torchiano M (2017) Effsize: Efficient Effect Size Computation (v. 0.7.1). CRAN package repository. https://cran.r-project.
org/web/packages/effsize/effsize.pdf. CRAN package repository. [Online; accessed 20-November-2017]

Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-based testing approaches. Softw Test Verif Reliab.
22(5):297–312. doi:10.1002/stvr.456

Vargha A, Delaney HD (2000) A critique and improvement of the cl common language effect size statistics of mcgraw
and wong. J Educ Behav Stat. 25(2):101–132. doi:10.3102/10769986025002101. http://arxiv.org/abs/https://doi.org/
10.3102/10769986025002101

Vasilevskii MP (1973) Failure diagnosis of automata. Cybernetics 9(4):653–665. doi:10.1007/BF01068590
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Measurement. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-29044-2_3
Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: A survey. Softw Test Verif Reliab.

22(2):67–120. doi:10.1002/stv.430
Zhang YF, Tian YC, Kelly W, Fidge C (2017) Scalable and efficient data distribution for distributed computing of all-to-all

comparison problems. Futur Gener Comput Syst. 67:152–162

http://dx.doi.org/10.1109/TSE.2014.2327020
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1016/j.infsof.2007.02.015
http://dx.doi.org/10.1109/TSE.2009.35
http://dx.doi.org/10.1002/stvr.v14:2
http://dx.doi.org/10.1016/bs.adcom.2015.04.003
http://www.sciencedirect.com/science/article/pii/S0065245815000327
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.0-rbac-v1.0-cs02.pdf
http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/cs02/xacml-3.0-rbac-v1.0-cs02.pdf
http://dl.acm.org/citation.cfm?id=2819009.2819204
http://dl.acm.org/citation.cfm?id=236187.233118
http://dx.doi.org/10.1007/3-540-45608-2_3
http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://dx.doi.org/10.1007/978-3-642-05031-2_9
https://cran.r-project.org/web/packages/effsize/effsize.pdf
https://cran.r-project.org/web/packages/effsize/effsize.pdf
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.3102/10769986025002101
http://arxiv.org/abs/https://doi.org/10.3102/10769986025002101
http://arxiv.org/abs/https://doi.org/10.3102/10769986025002101
http://dx.doi.org/10.1007/BF01068590
https://doi.org/10.1007/978-3-642-29044-2_3
http://dx.doi.org/10.1002/stv.430

	Abstract
	Context
	Objective
	Method
	Results
	Conclusion
	Keywords

	Introduction
	Background
	Finite state machine based testing
	Mutation analysis in FSM-based testing
	FSM-based testing methods
	W method
	HSI method
	SPY method

	Role-based access control
	FSM-based testing of RBAC systems
	Test generation from FSM(P)

	Test case prioritization
	Similarity testing

	Similarity testing for RBAC systems
	RBAC similarity
	Simple dissimilarity:
	RBAC applicability:

	Test prioritization algorithm

	Experimental evaluation
	Analysis of the complete test suites
	Analysis of the subtest suites
	Effect size to subtest suites

	Discussion
	RBAC similarity compared to the other criteria
	Random prioritization vs. simple dissimilarity
	Practical feasibility

	Threats to validity
	Conclusions
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Publisher's Note
	References

