
Learning from Difference: An Automated Approach for Learning
Family Models from Software Product Lines

(Artifact)

Carlos Diego N. Damasceno
damascenodiego@usp.br

University of Sao Paulo, BR and
University of Leicester, UK

Mohammad Reza Mousavi
mm789@leicester.ac.uk
University of Leicester

Leicester, UK

Adenilso Simao
adenilso@icmc.usp.br

University of Sao Paulo (ICMC-USP)
São Carlos, SP, BR

ABSTRACT
Family models are useful assets to represent variability and pave
the way for efficient model-based testing and model checking for
SPLs. Albeit reasonably efficient, their creation and maintenance
tend to be time consuming and error-prone, especially if there are
crosscutting features. To tackle this issue, we introduce FFSMDiff , a
fully automated technique to learn featured finite state machines
(FFSM), a family-based formalism that unifies Mealy Machines
from SPLs into a single representation. Our technique incorporates
variability tomatch andmergeMealymachines into succinct FFSMs,
especially if there is high feature reuse. This submission aims at
the documentation of the artifacts created for the homonym paper
accepted at the research track of the SPLC’19.

1 INTRODUCTION
In our homonym paper, we provide a description of FFSMDiff , a
technique to learn featured finite state machines (FFSM) [3], and
an empirical analysis of (i) its effectiveness for learning succinct
models and (ii) the correlation between the size of learnt FFSMs
and amount of feature sharing. There we provide a summary of the
experiment and a link to our lab package, as well as references to
third-party tools.

In this paper, we provide more information about our repository
at https://github.com/damascenodiego/learningFFSM that should
be sufficient to repeat and reproduce our experiments. We hope our
artifacts are useful to researchers and practitioners explore related
work or replications using their particular setting.

2 THE REPOSITORY
In Figure 1, we depict our repository structure with links to folders.
In the FFSM_diff repository, we have a Java project that can be
opened using the Eclipse IDE [4] and JDK version 1.8. This project
has three subfolders: Benchmark_SPL, lib, and src. Details about
the subject systems, code artifacts and how to replicate our study
are shown in Sections 3, 4 and 5, respectively.

In Benchmark_SPL, we have the subject systems , i.e., agm, vm,
and ws; and their respective models (i.e., FSMs, FFSMs) as KISS files,
feature models as XML files and test scripts. Images of the models
are also available. In learningFFSMs, there is an RStudio [6] project
for the analysis of result. The learnFFSM.jar is a compiled version
of the FFSMDiff algorithm. To replicate our experiments, run the
test scripts run_‹ID›.py and run_‹ID›_pairs.py.

SPLC ’19, September 9–13, 2019, Paris, France
2019. ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336307

FFSM_diff/

Benchmark_SPL/

agm

vm

ws

learningFFSMs/

script.r

dataset.tab

recovering_ffsm.tab

learnFFSM.jar

run_‹ID›.py

run_‹ID›_pairs.py

lib/

src/

br.usp.icmc

uk.le.ac

Figure 1: Project
structure

In folder lib, we have some of the li-
braries required in our project. These
include FeatureIDE [7], and Apache
Commons Math [1]. Other libraries (e.g.,
LearnLib and AutomataLib [5]) are im-
ported using Apache Maven.

In folder src, we find the source-code
of the FFSMDiff algorithm. Our project
contains two packages: br.usp.icmc
and uk.le.ac. The former has code ar-
tifacts developed by Fragal et al. [3] that
we used in the first phase of our study to
validate FFSMs and derive FSMs. The lat-
ter has code artifacts that we developed
to (i) read/write FSMs; (ii) solve systems
of linear equations; and (iii) merge FSM
models into annotated FFSMs. Our code
artifacts are discussed in Section 4.

3 THE SUBJECT SYSTEMS
The Arcade Game Maker (AGM) SPL is a well-known pedagogical
example that describes arcade game machines with different game
rules. In Figure 2, our version of the AGM SPL [3] supports three
alternative games and one optional feature to Save the game. The
FSMs derived from the AGM FFSM have at least three states for the
game modes start, running and paused. If Save feature is included,
a fourth state is added.

Figure 2: The AGM feature model

The Vending Machine (VM) is an SPL that we hand-crafted based
on featured transition systems from a collection of illustrative SPLs
[2]. In Figure 3, our VM SPL supports three beverages, one optional
RingTone played when the beverage is completed, and two alter-
native currencies. These features composed interesting scenarios
as they resulted on FSMs with distinct structures and languages.
For the FSMs derived from the VM FFSM, we highlight main two
changes: (i) the addition of states for each of beverage; (ii) changes
in the initial state for each currency. The VM FFSM is our largest
SPL in terms of number of products and states.

https://github.com/damascenodiego/learningFFSM
https://doi.org/10.1145/3336294.3336307
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/agm
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/vm
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/ws
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/learningFFSMs
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/learningFFSMs/script.r
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/learningFFSMs/dataset.tab
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/learningFFSMs/recovering_ffsm.tab
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/Benchmark_SPL/learnFFSM.jar
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/lib
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/src/main/java/br/usp/icmc
https://github.com/damascenodiego/learningFFSM/tree/master/FFSM_diff/src/main/java/uk/le/ac

SPLC ’19, September 9–13, 2019, Paris, France Damasceno C.D.N. et al.

Figure 3: The VM feature model

The Wiper System (WS) is another SPL that we hand-crafted
based on the same collection aforementioned [2]. In Figure 4, our
WS has of two subsystems – a sensor to detect rain, and the wiper
itself; that come in two qualities, i.e., high and low, and one optional
feature for permanent movement. A high quality sensor can dis-
criminate between heavy/little rain, whereas a low quality sensor
can only distinguish between rain/no rain. Similarly, the high qual-
ity wipers can operate at two speeds, and the low quality wiper
operates at one single speed. These features lead to significant
changes in the structure and language of its derived FSMs.

Figure 4: The WS feature model

4 THE CODE ARTIFACTS
In folder src, we find the source-code of the FFSMDiff project. The
code artifacts we developed are found in the package uk.le.ac.
These include classes to (i) read/write FSMs; (ii) solve systems of
linear equations; and (iii) merge FSM models into FFSMs.

For reading and writing FSMs, we designed the ProductMealy
class using the CompactMealy class from LearnLib [5]. This class
extends basic operations over FSMs (e.g., reset, transition/output
functions) with methods to maintain product configurations, as
specified by our IConfigurableFSM interface.

For solving the systems of linear equations, we used the Apache
Commons Math library [1]. This open-source library supported us
to construct and solve the systems of linear equations to find the
state pairs most likely to be equivalent.

To represent FFSMs, we designed the FeaturedMealy class using
the FastNFA class, one of the LearnLib building blocks to repre-
sent non-deterministic models. We opted for a non-deterministic
representation because, if we ignore presence conditions, FFSMs
can be seen as a non-deterministic FSM. To represent conditional
states/transitions, we designed the classes ConditionalState and
ConditionalTransition with collections of Node objects. The
Node class is a FeatureIDE building block to represent feature
constraints.

5 REPLICATING OUR EXPERIMENT
To replicate our experiment, first download our GitHub repository.
In Linux, run the git clone command as in Listing 1.

1 git clone https :// github .com/damascenodiego/learningFFSM.git

Listing 1: Cloning the FFSMDiff repository

After cloning our repository, the files required to replicate our
experiments are available in the Benchmark_SPL folder. The jar file
learnFFSM.jar is a compiled version of our FFSMDiff algorithm.
To display the help menu, run java -jar learnFFSM.jar -h.

1 −clean <arg> Simplify FFSM labels
2 −fm <arg> Feature model
3 −fref <arg> FFSM reference
4 −h Help menu
5 −mref <arg> Mealy reference
6 −out <arg> Output file
7 −updt <arg> Mealy update

Listing 2: The FFSMDiff help menu

To run our algorithm, we require a feature model in XML format
compatible with FeatureIDE (to -fm), a reference FSM or FFSM
model (to -mref or -fref) and an updated FSM version (to -updt).
The -out parameter sets the path to the output file and the -clean
parameter cleans FFSMs by removing self-loop transitions.

The FFSMs models are represented in the KISS format, where
transitions are denoted as in Listing 3.

1 1@[(TRUE)] −− a@[(TRUE)]/_1() −> 4@[(B)]
2 1@[(TRUE)] −− b@[(W)]/_1() −> 5@[(TRUE)]
3 1@[(TRUE)] −− c@[(W and (not S))]/_1() −> 1@[(TRUE)]
4 1@[(TRUE)] −− c@[((not W) or S)]/_0 () −> 1@[(TRUE)]
5 1@[(TRUE)] −− d@[(S)]/_0() −> 1@[(TRUE)]

Listing 3: Example of FFSM in KISS format

The FSMs are represented in a similar fashion, except for the
product configuration in the first line of the file, as in Listing 4.

1 AGM A M L C R V Y P B (not S)
2 1 −− a/_1() −> 4
3 1 −− c/_0() −> 1
4 1 −− b/_0() −> 1

Listing 4: Example of FSM in KISS format

To run our experiments, we designed python scripts to call our
tool to include all products into a single FFSM and learn fresh
FFSMs from all pairs of products. These are run_‹ID›.py and
run_‹ID›_pairs.py, respectively. The learnt FFSMs are saved in
the folders learnt and learnt_pairs and measures are printed
in the standard output. For the statistical analysis, we used the R
script learningFFSMs/script.r to load the measures organized
in tabular format, as in files learningFFSMs/dataset.tab and
learningFFSMs/recovering_ffsm.tab, and plot our statistics.

REFERENCES
[1] Apache. 2016. Commons Math: The Apache Commons Mathematics Library.

http://commons.apache.org/. [Online; accessed 28-Mar-19].
[2] Andreas Classen. 2010. Modelling with FTS: a Collection of Illustrative Examples.

https://researchportal.unamur.be/files/1051983/69416.pdf
[3] Vanderson Hafemann Fragal, Adenilso Simao, andMohammad RezaMousavi. 2017.

Validated Test Models for Software Product Lines: Featured Finite State Machines.
Springer International Publishing, Cham, 210–227.

[4] Eclipse IDE. 2019. Eclipse desktop and Web IDEs. https://www.eclipse.org/ide/.
[Online; accessed 19-May-19].

[5] Harald Raffelt and Bernhard Steffen. 2006. LearnLib: A Library for Automata
Learning and Experimentation. Springer, Berlin, Heidelberg, 377–380.

[6] RStudio. 2019. RStudio: Open source and enterprise-ready professional software
for data science. https://www.rstudio.com/. [Online; accessed 19-May-19].

[7] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-oriented
software development. Science of Computer Programming 79 (2014), 70–85.

http://commons.apache.org/
https://researchportal.unamur.be/files/1051983/69416.pdf
https://www.eclipse.org/ide/
https://www.rstudio.com/

	Abstract
	1 Introduction
	2 The repository
	3 The subject systems
	4 The code artifacts
	5 Replicating our experiment
	References

