
An Experimental Evaluation of Conformance
Testing Techniques in Active Automata Learning

Bharat Garhewal
Radboud University

Nijmegen, The Netherlands
b.garhewal@ru.nl

Carlos Diego N. Damasceno
Radboud University

Nijmegen, The Netherlands
d.damasceno@cs.ru.nl

Abstract—Active automata learning is a technique for dynam-
ically learning finite state machine models of black-box systems.
Conformance testing is a well-known bottleneck during learning.
While multiple conformance testing techniques (CTTs) for Finite
State Machines have been proposed, there is a lack of empirical
studies that assess the effects of these CTTs during learning. In
this work, we compare the performance of eight different CTTs
(W, Wp, HSI, H-ADS, H, SPY, SPY-H, I-ADS) while learning
46 models from different communication protocols. Moreover,
we propose APFDL as a metric for characterizing the efficiency
of automata learning experiments in terms of fault detection
capacity. This metric allows identifying CTTs with a lower total
cost regarding the number of symbols and resets and a higher
rate of state discovery during learning. Our results indicate that
while the total cost entailed by CTTs in learning tends to be
negligible, we found a significant difference in fault detection
rate in learning. Nevertheless, the differences in fault detection
rates become negligible when CTTs are applied in randomized
mode. These findings reveal the positive role that randomness
can have in improving learning efficiency, despite compromising
test completeness.

I. INTRODUCTION

Active automata learning is frequently used to learn be-
havioral models of software systems. First introduced by
Angluin [1, 2] in 1987, it has since been improved [3, 4] and
extended in a variety of ways. It has been used to learn models
of many real-world systems [5, 6, 7, 8] (we refer to [9, 10]
for surveys). While automata learning is applicable in multiple
settings, in this work, we concentrate on finite state machines
(FSMs) (aka Mealy machines.) Active learning is a dynamic
technique, thus it involves interacting with the system under
learning (SUL) via output queries (OQs): sending inputs to
the SUL and observing the resulting outputs. By using OQs,
learning algorithms construct a hypothesis model of the SUL.
Learning also involves the process of conformance testing,
whereby we test whether the SUL conforms to a hypothesized
model. Conformance testing is also implemented using OQs.
However, conformance testing is known to be a bottleneck
in the learning process [11, 12, 13], dwarfing the number of
inputs sent to the SUL during hypothesis construction.

Conformance testing — the problem of determining if
an implementation conforms to a specification — works by
constructing a test-suite given (1) a specification and (2) an

Research supported by NWO TOP project 612.001.852 “Grey-box learning
of Interfaces for Refactoring Legacy Software (GIRLS)”.

estimated upper-bound m on the number of states in the SUL.
If the specification and the SUL have the same response to
the test-suite and the bound m is correct, we conclude that
the SUL conforms to the specification, and we say that the
test-suite passes. While it is known that conformance testing
is exponential [14], there have been many conformance testing
techniques (CTTs) proposed in order to improve the efficiency
of testing in practice (i.e., reduce the size of the test-suite
necessary to conclude conformance) [15]. Most of these CTTs
have the same worst-case complexity, they claim to perform
better under specific circumstances, such as the existence of
adaptive distinguishing sequences [16]. However, in automata
learning, to learn an SUL of n states, we may require n − 1
calls to a conformance tester. Thus, it is important that the
SUL fails the test-suite generated by our CTT as quickly as
possible [17], (called “finding counterexamples faster”). In this
work, we wish to experimentally check the performance of
different CTTs specifically in the context of automata learning.
In this context, we are only concerned with how quickly an
SUL fails the test-suite, and not with the size of the test-suite.
Testing using randomized test-suites has also been shown to
fail quicker [18]. Additionally, while some modern CTTs such
as the SPY-(H)-methods [19, 20] have better overall fault
detection performance, it is unknown if this is the case in the
context of automata learning.

In this work, experimentally evaluate whether CTTs which
generate smaller test-suites improve efficiency of active au-
tomata learning. We answer do this via an experimental
survey of communication protocol models. We run learning
experiments for 46 FSMs from the AutomataWiki [21]1 with
L# [22] as the default learning algorithm. We compare eight
CTTs (W, Wp, HSI, Hybrid-ADS, I-ADS, SPY, SPY-H, and
H) in randomized and non-randomized styles. The SPY, SPY-
H, and H methods cannot be used in a randomized fashion,
so we skip randomized test-suites for them.

Our results indicate that for these (smaller) communication
protocols, the choice of non-randomized CTTs has a minor
effect on total cost of learning and average fault detection
capacity in favor of I-ADS, with no significant difference
between I-ADS and H-ADS or HSI. On the other hand, using
randomized CTTs results in both lower cost of learning and

1Available at: https://automata.cs.ru.nl.

https://automata.cs.ru.nl

higher average fault detection capacity for all CTTs, with
negligible differences between different CTTs. Overall, there
is a significant advantage to randomized CTTs when compared
to non-randomized CTTs for total cost of learning and fault
detection capacity. However, this must be weighed against
the fact that randomized CTTs do not offer any kind of
completeness guarantee.

Specifically, our contributions are as follows:
1) We introduce APFDL, a new metric to analyze the effi-

ciency of learning by taking into account fault detection
capacity and total cost during a learning experiment.

2) We empirically evaluate the efficiency of eight CTTs in
the context of active automata learning.

3) We show that lower total cost of learning does not imply
a higher fault detection capacity.

4) We show that the efficiency of CTTs can become neg-
ligibly different in randomized mode.

The rest of the paper is structured as follows: Section II
presents requisite background information and related work,
Section III contains the methodology for our experiments,
Sections IV and V present and discuss our experimental setup
and the results, and Section VI concludes.

II. BACKGROUND AND RELATED WORK

In this section, we first recall the definition of a finite
state machine, introduce active (automata) learning and some
learning algorithms. Next, we describe conformance testing
of FSMs in active learning, and briefly discuss different
algorithms for conformance testing.

Definition 1 (Finite State Machine): An FSM M is a tuple
(Q, q0, I, O, δ, λ) where
• Q is a finite set of states, with q0 ∈ Q being the initial

state,
• I and O are finite sets of input and output symbols

respectively,
• δ is the total transition function Q× I → Q, and
• λ is the total output function Q× I → O.

The concatenation of two sequences σ1, σ2 is indicated by
σ1 ·σ2. We extend the transition function to an input sequence
i · σ as follows δ∗(q, i · σ) = δ∗(δ(q, i), σ). The output
function is extended to an input sequence i · σ as follows
λ∗(q, i · σ) = λ(q, i) · λ∗(δ(q, i), σ). For the empty input
sequence σ = ε, we define δ∗(q, σ) = q and λ∗(q, σ) = ε.
We write λ(M, σ) to indicate λ∗(q0, σ). Observe that this
definition produces a deterministic FSM. In this work, we only
consider deterministic FSMs.

Figure 1 provides a visualization of a modified version of
the Minimally Adequate Teacher (MAT) framework introduced
in [1]. The MAT framework assumes the presence of a learner
and a teacher, where the teacher has complete knowledge of
a hidden FSM M, called the System Under Learning (SUL)
2. The goal of the learner is to learn M by posing queries to
the teacher. These queries may take the form of output queries

2Also called “Implementation Under Test” or “System Under Test” in
testing literature.

(OQs), which are input sequences σ, and the teacher responds
with an output sequence λ∗(M, σ) for the query. Each output
query has an implicit reset symbol at the end of the input
sequence, which brings the FSM back to its initial state.
By asking OQs, the learner constructs a hypothesis H, and
poses an equivalence query (EQ), to check if the hypothesis is
language-equivalent to the SUL: that is, for all input sequences
σ ∈ I∗ : λ∗(H, σ) = λ∗(M, σ). If H and M are equivalent,
the teacher replies “YES” and learning terminates. If not, the
teacher replies with a counterexample, and learning resumes.
Thus, a single active learning experiment may consist of
multiple rounds of learning and equivalence-checking phases.
In practice, the teacher does not know the hidden FSM M
and answers EQs using conformance testing.

A. Learning Algorithms

There are multiple learning algorithms available for
learning FSMs: L∗M [23], Rivest-Schapire [4], TTT [3],
DHC [24], and L# [22]. Most of the best-performing algo-
rithms (Rivest-Schapire, TTT, L#) have the same complexity
O(|I| · |Q|2 + |Q| log(m)), where m is the length of the
longest counterexample. In this work, we have chosen to use
L#, which uses a simple observation tree as its primary data
structure and prevents duplicate OQs.

Learner

Teacher

SUL

CTT

Output Query
Response

Equivalence Query
Yes / CE

OQ

Fig. 1. Variant of the Minimally Adequate Teacher framework for L#.

B. Conformance Testing

Informally, conformance testing is the problem of testing
whether an SUL adheres to a specification through OQs. Given
a hypothesis H and under the assumption that the FSM M
representing the SUL has at most m states, a conformance
testing technique (CTT) can generate an m-complete test-suite:

Definition 2: A test-suite π is m-complete for an FSM M
if for all in-equivalent FSMs M′ with at most m states, there
exists a σ ∈ π such that λ∗(M, σ) 6= λ∗(M′, σ).
If the outputs of H and M agree for all tests, then M passes
the test-suite. In practise, the size of M is unknown, and we
set m = n + k, where n is the number of states in H and
k ∈ N is the number of ‘extra’ states. The number of tests in
a test-suite is proven to be exponential in the size of k [14].

We now describe the components of a test-suite. Each test-
suite typically requires three components:

1) a set of access sequences A: an access sequence for a
state s is a sequence σ such that δ∗(q0, σ) = s. Thus,

the set A contains an access sequence for each state in
the FSM. The empty sequence “ε” is used as an access
sequence for the initial state;

2) a set of infix sequences: I≤k+1; and
3) a characterization set W : A characterization set is a

set of input sequences such that for any pair of distinct
states in the FSM, the set contains at least one input
sequence for which the output sequences of the two
states disagree.

We note that A and I≤k+1 are fixed over all CTTs. How-
ever, some CTTs may impose additional conditions over the
characterization set W . Since 1978, there have been multiple
CTTs proposed: UIO [25], UIOv [26], W [27, 28], Wp [29],
HSI [30, 31, 32, 33], PDS [14, 34, 35], ADS [16, 33], H-
ADS [18], SPY [19], SPY-H [20], P [36], I-ADS [33], and
H [37, 38]. Figure 2 shows a ‘family-tree’ of different CTTs.
We do not include the UIO and the UIOv methods in the figure
as these methods are not m-complete.

CTT

W SPY HSI ADS

Wp H H-ADS I-ADS

SPY-H

Fig. 2. Relationship of different CTTs: Arrows imply “derivation”, that is,
H-ADS can be derived (or is inspired) from the HSI and ADS algorithms.

C. Overview of CTTs

We provide a short overview of all the above CTTs here.
We have selected eight CTTs: W, Wp, HSI, H-ADS, H, SPY,
SPY-H, and I-ADS. The P-method was excluded as we did not
find an implementation and the algorithm is very complex. All
of these techniques offer the same m-complete guarantee.

The W-method [27, 28] first introduced the notion of a
characterization set in conformance testing. However, it does
not mandate any particular algorithm for the construction
of the set. In our implementation, we have considered the
standard Hopcroft partition algorithm for constructing the
characterization set. One can also use a simple breadth-first
search approach to construct separating sequences3 for each
pair of states; the collection of these sequences is also a
characterization set.

The Partial-W (or Wp) method [29] is an improvement
of the W-method: it divides the characterization set used by
the W-method into (smaller) per-state characterization sets. In
other words, for some state s, the Wp-method reduces the

3A separating sequence for a pair of distinct states is an input sequence for
which the two states have different output responses.

characterization set W to the set Ws, consisting of sequences
that are necessary to “characterize” state s.

The Harmonic State Identifier (HSI) [30, 31, 33, 32] algo-
rithm is similar to the W/Wp-methods, with the extra require-
ment that the per-state characterization sets be harmonized.
Two characterization sets for states s and t are harmonized
if the characterization sets Ws and Wt share a separating
sequence for states s and t. Note, the characterization sets
created with the HSI algorithm can be used in the W and Wp
CTTs as well.

The Preset Distinguishing Sequence (PDS) [14, 34, 35]
method attempts to construct a singleton characterization set,
but suffers from the drawback that a PDS may not always exist.
The Adaptive Distinguishing Sequence (ADS) [16] method
attempts to expand the applicability of the PDS method by
using an adaptive distinguishing sequence: An ADS is a
decision tree where the nodes contain an input symbol and a
set of states, with the leaf nodes containing no input symbols
and just one state. The sequence of input symbols from the
root node to a leaf node uniquely identifies the state at the leaf
node. A disadvantage of the ADS-method is that it can only
be used for FSMs which admit an ADS; thus, this method
cannot be used universally.

The Hybrid-ADS (H-ADS) [39] and I-ADS [33] methods
both attempt to modify the ADS-method such that it can be
used universally. Both choose similar approaches: while the
H-ADS method supplements results of the ADS-method with
HSI sequences to identify a state, the I-ADS method creates
a set of incomplete ADSs which together uniquely identify a
state.

The H, SPY, and SPY-H methods differ from the previous
methods in the way they construct their test-suites. The
H-method [37, 38] improves on the W-method by select-
ing separating sequences on-the-fly during construction of a
“testing-tree”. The SPY-method [19] attempts to reduce “test-
branching” by combining shorter test sequences into a single
larger test sequence. The SPY-H [20] method combines both
approaches, and is claimed to be the best at fault detection
in [40].

D. Related Work

Dorofeeva et al. [15] present a survey of the W, Wp, HSI, H,
UIOv, UIO, and PDS CTTs on 250 randomly generated FSMs
with k = {1, 2}. Additionally, they also present experimental
results for two realistic FSMs. They compare CTTs on the
aggregate length of all sequences in the test suite. Note, this
metric ignores the number of resets in the test suite. The
authors note that while the H-method outperforms the HSI-
method in general, the improvement is bigger in realistic
FSMs than randomly generated FSMs. However, we note that
the approach used in [15] essentially benchmarks a single
equivalence query. In active learning, we may require multiple
equivalence queries to learn an FSM, and the size of the test
suite is not as important as finding a counterexample as quickly
as possible. While it is reasonable to assume that a smaller
test suite would be better, we do not know how these CTTs

perform over the course of an entire learning experiment.
Additionally, their work does not consider more recent CTTs
such as H-ADS, SPY, and SPY-H.

Aichernig et al. [41] compare combinations of W, Wp,
mutation-coverage, transition-coverage, RandomWords4, Ran-
domWalk5, and Randomized-Wp CTTs and three learning
algorithms according to the total number of input symbols used
for answering output and equivalence queries. Informally, Ran-
domWalk/RandomWords CTTs generate random sequences
for testing, while Randomized-Wp generates a random set
of infix sequences. Their experiments were performed on 39
benchmark FSMs from the AutomataWiki. They recommend
that either the Rivest-Schapire [4] or TTT [3] be used as the
learning algorithm and either mutation-based testing or the
Randomized-Wp methods be used as CTTs. However, they do
not consider newer CTTs in their study.

Thus, to the best of the authors’ knowledge, while there
exist a multitude of different conformance testing techniques
for FSMs, with the exception of [41], there do not appear to be
recent studies evaluating the performance of these techniques
in the context of automata learning.

III. METHODOLOGY

According to Howar et al. [17], efficient model learning
requires finding counterexamples fast with a minimal number
of symbols and resets. In this section, we introduce a metric
that quantifies the efficiency of active learning experiments as
a function of the state detection rate and total cost of learning.

A. Average Percentage of Faults Detected During Learning

Our metric builds upon principles from test prioritization,
in particular the average percentage of faults detected [42].
Let TC be the total cost defined by the number of symbols
and resets posed in learning and testing a correct model from
a SUL with |S| states, where TCi indicates the experiment
cost until round i. Let ∆Hi be the number of states detected
between rounds i and i − 1 of a learning experiment. We
define the average percentage of faults detected in a learning
experiment (APFDL) as in Equation (1).

APFDL = 1−
∑|S|

i=1(TCi ·∆Hi)

TC · |S|
+

1

2 · TC
(1)

The APFDL is derived from a series of data points indicating
the total cost required to discover a fraction of the states
of a SUL during a learning experiment. These data points
are gathered whenever a round is completed. The term 1

2·TC
is necessary to ensure that the area under the curve of
APFDL is 100%. The APFDL value, without 1

2·TC , for TC = 1
would be 50%, which is incorrect; adding the corrective 1

2·TC
makes it 100%. In Figure 3, we illustrate the percentage of
states discovered per round in four experiments performed on
TCP6 [43].

4Randomly generated sequences.
5Similar to RandomWords.
6Transmission Control Protocol.

0 20000 40000 60000 80000 100000 120000 140000
Total Cost

20%

40%

60%

80%

100%

Subject: TCP_Linux_Client
Fraction of the SUL learned vs. Total cost

Testing Technique
HSI
H-ADS
I-ADS
SPY-H
H
W
Wp
SPY

Fig. 3. Example illustrating APFD in learning

As in test prioritization [42], the APFDL is a weighted sum
of the total costs TCi for learning ∆Hi states after each round
i of a learning experiment is completed. This summation is
then normalized by the total cost TC to learn the SUL and
the number of states in the SUL |S|. The APFDL provides
a numeric value ranging from 0 to 100 that quantifies the
area across the curve, where higher values imply faster state
detection during a learning experiment. In Table I, we report
the number of symbols and resets posed during learning (LSR)
and testing (TSR), and their sums indicated by the total cost
(TC) and the numbers of rounds required by four CTTs in
learning the TCP model. The learning efficiency provided by
each CTT is indicated by APFDL.

TABLE I
COST AND NUMBER OF ROUNDS REQUIRED PER CTT - TCP MODEL

CTT LSR TSR TC EQ APFDL

HSI 2351 54372 56723 9 96.71%
H-ADS 2351 58751 61102 9 96.65%
I-ADS 2138 70558 72696 11 96.15%
SPY-H 2245 46925 49170 11 95.99%
H 2169 92687 94856 11 95.09%
W 2291 131208 133499 10 94.06%
Wp 2314 104129 106443 9 93.77%
SPY 2218 90207 92425 12 93.12%

In terms of TC, we see that SPY-H resulted in a more
efficient learning experiment while using two more EQs as
compared to HSI; with the latter having a higher APFDL. Given
that all CTTs produced correct models, this evidence indicates
that testing techniques can have very distinct state detection
capacities during active learning experiments. In Figure 4, we
show a heatmap for the interpolation of the percentage of states
learned of the TCP model from the TC for learning. Darker
cells indicate higher numbers of symbols and resets to learn
a given percentage of states.

As in previous studies [44], the W method entailed the
highest TC to completely learn the SUL model while SPY-
H had the lowest TC. We see that up to the 90% point,
the HSI method had a lower TC than the SPY-H method.

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
Fraction of the SUL learned

S
P

Y-
H

H
S

I
H

-A
D

S
I-A

D
S

S
P

Y
H

W
p

W
Interpolation of Total cost

Fig. 4. TC for % of the SUL Learned - TCP model. Darker shades indicate
higher TC.

Additionally, up to the 70% point, the W method performed
approximately the same as the others. These findings suggest
that the superiority of a CTT may be not consistent throughout
the learning process. Therefore, tracking state detection during
learning experiments becomes relevant to precisely measure
the speed at which a CTT finds counterexamples and states
are discovered by an active learning algorithm.

IV. EXPERIMENTAL EVALUATION

An efficient active learning experiment is characterized by
finding counterexamples fast and saving symbols and resets.
To quantify the efficiency of an active learning experiment,
this work introduces a metric to calculate the weighted cost
for discovering states of a SUL. In this section, we present
an experiment designed to analyze the performance of several
CTTs in active learning experiments. We present the subject
systems used as SULs in our experiments, the implementation
artifacts, the configuration parameters and modes for confor-
mance testing, and metrics that guided our experiment.

A. Subject Systems

For our experimental evaluation, we have chosen to simulate
models learned from real-world communication protocols. We
relied on models of various communication protocols available
in the AutomataWiki [21]. In Table II, we report characteristics
of our subject models in terms of numbers of states and inputs.

TABLE II
DESCRIPTION OF THE SYSTEMS UNDER LEARNING

Group # Models # States # Inputs

Bankcards [8] 11 4-9 14-15
SSH [45] 3 17-66 13-22
TCP [43] 6 12-57 10-13
TLS [12] 23 7-15 8-12
Philips models [46] 3 34-58 14-22

In total, we have 46 models describing realistic behavior
of protocols used in 4 different domains. In terms of size,

the subjects have an average of 10 states and up to 15 inputs
symbols in their alphabet. The largest model in our dataset is
BITVISE, with 66 states and 13 inputs. Figure 5 presents the
distribution of benchmark FSMs over the size of their input
alphabet and number of states. As we can observe, the majority
of our communication protocols are small in size.

10 20 30 40 50 60
States

8

10

12

14

16

18

20

22

In
pu

ts
Fig. 5. Scatterplot of the size of the inputs and the number of states in the
benchmark FSMs.

B. Model Learning and Testing Implementations

To perform the active learning experiments, we relied on
the L# algorithm [22], the state-of-the-art for observation
tree-based active learning. We built our methodology upon
an implementation of the L# algorithm by logging the total
cost for learning and testing after each equivalence query and
calculating the APFDL. For the sake of reproducibility, the
artifacts created in this work are made available online7.

To approximate an equivalence oracle, we relied on a set of
eight different CTTs, ranging from the most classical CTTs
(W, Wp) to the more recent ones relying on state identifiers
(HSI, H, SPY, SPY-H) and adaptive distinguishing sequences
(H-ADS and I-ADS). As being the oldest and most familiar
CTT, the W method was selected as baseline for comparisons
against the others. All the chosen CTTs generate m-complete
test-suites. At the time of writing this work, this is the most
extensive empirical study evaluating the efficiency of CTTs in
active model learning.

We extended the L# implementation to support the W,
Wp, HSI, H-ADS, and I-ADS conformance testers. All test-
suites generated are maximal, that is, no test is a prefix of
another test. As our implementation of the H-ADS method,
we relied on portions of the work done by Soucha [33]. The
implementations of the H, SPY, and SPY-H methods are reused
from the FSMlib [47]. Given that the above three algorithms
use a test-tree to construct their test-suites, the test-suites
are maximal by construction. For all learning experiments,

7Available on Zenodo, DOI: 10.5281/zenodo.8117699

duplicated OQs were filtered out and counted once with the
support of a cache.

C. Parameters for Conformance Testing

Recall that, in conformance testing, we typically do not
know the number of states in an implementation. Hence, an
upper bound m is often taken as assumption. Similarly, in
active learning, a constant number of extra states k is used by
CTTs to aid state discovery from an intermediate hypothesis
with n states, such that this upper-bound increases whenever
a new state is found, i.e., m = n + k. Nevertheless, as the
cost for conformance testing grows exponentially, choosing
a very large value for k may result in incredibly effective
but inefficiently large test-suites. Based on results from pre-
vious empirical studies [15, 33], we set our fixed values for
k ∈ {2, 3}.

CTTs in Randomized and Non-Randomized Modes: Under-
estimating k can cause learning incompleteness while over-
estimation can cause scalability issues. This trade-off has
motivated the investigation of CTT variants where the number
of extra states k is randomized, rather than being set as a fixed
value. Randomized CTTs have been known to seemingly work
better than fixed approaches [41, 18]. Thus, we include both
randomized and fixed approaches in our experiments.

Recall that CTTs usually require three components: a set of
access sequences A, the set of infix sequences I≤(k+1), and a
characterization set W .

In randomized mode, a CTT takes two parameters: a mini-
mum number of extra states k and an expected random length
l. The length of an infix sequence is defined by a function
max(k, exp(l)), where exp(l) is the number of Bernoulli
trials required for success. In this work, the only CTTs which
support randomized mode are W, Wp, HSI, H-ADS, and I-
ADS. The H, SPY, and SPY-H methods are left out, as they
are built upon a finite infix set.

For our randomized experiments, we defined k ∈ {0, 1, 2}
and l ∈ {2, 3} for eligible CTTs. Since randomized experi-
ments no longer offer guarantees to m-completeness, we re-
peat each randomized learning experiment 50 times to produce
a sample of measurements of learning costs and hypothesis
sizes.

D. Metrics

In practice, active learning experiments stop once the SUL
is learned. Since the SUL is unknown, domain knowledge
or other stopping criteria are needed to determine if an
SUL has been learned. Thus, the most important metric is
the overall amount of time taken to finish an experiment.
However, running time is a very difficult metric to capture,
since experiments must be repeated in isolation to achieve
stability of measurement and the results will differ depending
on the hardware of the host machine. To address this problem,
the aggregate number of symbols and resets in OQs is a
popular approximated, time-independent metric for learning
efficiency. We measure the costs inherent to the learning and
testing phases of our experiments by recording the number of

times a SUL is reset and the number of symbols posed in each
type of queries. The total cost (TC) is estimated by summing
up the individual costs of both OQs and EQs. To derive the
APFDL, we also keep track of the hypothesis size during each
equivalence query.

To analyze our results, we relied on Python and the Jupyter
notebook platform. We used the Mann-Whitney U test to
measure the statistical significance (p < 0.05) between the
total cost of the learning experiments. We complement our
statistical analysis with the Vargha-Delaney’s Â effect size to
measure the significance of the difference in the total cost of
the techniques. To categorize the magnitude of the effect size,
we used the intervals between the value of Â and 0.5 as shown
in Table III. Informally, in a comparison between A and B,

TABLE III
SIGNIFICANCE RESULTS

Effect Size Effect Range

Negligible [0.000, 0.147)
Small [0.147, 0.330)
Medium [0.330, 0.474)
Large [0.474, 0.500]

the value of Â may range from [0, 1]. If the value of (Â−0.5)
is positive, then “A” is better than “B” (and vice-versa); while
the magnitude of the difference indicates the effect size.

V. DISCUSSION

We now discuss the results of our experiments for non-
randomized, randomized, and finally, a comparison between
the best of both the CTT modes. Note that, in all tables, the
more performant variant is listed under column “A”.

Non-Randomized Experiments

Experiments with k = 1 resulted in some learning experi-
ments terminating unsuccessfully (that is, we did not learn the
correct FSM). We have thus excluded all learning experiments
with k = 1 from our analysis. Figure 6 visualizes results from
our non-randomized experiments for k = 2. We present box-
plots of the TC for our eight CTTs: the y-axis is the TC (at log-
scale) and the x-axis represents the different CTTs. Outliers
are represented with the “×” symbol.

In general, we infer from the plot that the total cost be-
tween different CTTs remains roughly the same. As expected,
experiments using the W CTT performed the worst amongst
all eight CTTs, while the rest seem to perform roughly the
same with H-ADS and I-ADS performing marginally better.
Table IV contains the statistically significant results. Entries
listed under the column ‘A’ perform better than entries under
column ‘B’ with the corresponding effect size. The complete
list including statistically insignificant results is available in
the supplementary material.

From Table IV, we find that all comparisons have a ‘small’
effect on performance, with the exception of I-ADS against
W. We note that amongst the newer CTTs, I-ADS performs
marginally better than SPY and SPY-H. There does not appear

W Wp HSI H SPY SPY-H H-ADS I-ADS

10
3

10
4

10
5

10
6

10
7

TC

Fig. 6. Total Cost of learning per CTT in Non-Randomized mode for k = 2.

TABLE IV
STATISTICALLY SIGNIFICANT EFFECT SIZES FOR TC BETWEEN

NON-RANDOMIZED CTTS

Effect Size Effect Magnitude
A B

H-ADS W 0.136 small

HSI W 0.140 small

I-ADS

SPY 0.120 small
SPY-H 0.161 small
W 0.179 medium
Wp 0.122 small

to be a clear ‘winner’ between the newer CTTs in terms of total
cost of learning: there is no significant difference between the
performance of HSI, H-ADS, I-ADS; while SPY-(H) seems to
perform worse than I-ADS. Note, however, that the size of the
effect is small.

W Wp HSI H SPY SPY-H H-ADS I-ADS
0.5

0.6

0.7

0.8

0.9

1.0

A
P

FD
_L

Fig. 7. APFDL per CTT in Non-Randomized mode for k = 2.

The APFDL plot (Figure 7), however, shows a larger dif-
ference. Recall that the APFDL metric measures efficiency of
learning as how fast we manage to learn an FSM if we do not
know the actual FSM. In this case, we see larger differences in
experiments with W where it clearly performed worse than all

the others while I-ADS and HSI seem to perform the best.
Table V contains the results for all statistically significant
experiments. As expected, the baseline experiments with the
W CTT performed the worst, with effect sizes being medium
or large. I-ADS seems to be a very clear winner in this
comparison – I-ADS performs better than all the other CTTs
with small advantages over the H-ADS and HSI experiments
and large differences over all the rest. Unexpectedly, the SPY-
(H) CTTs do not perform better than any CTT other than the
W algorithm. In summary, the APFDL comparisons indicate a
general suggestion to use the I-ADS CTT.

The I-ADS CTT offers a minor improvement over W in
terms of total cost of learning. APFDL indicates that I-ADS,
H-ADS, and HSI CTTs perform better than all others CTTs
with the baseline W performing the worst.

Efficiency of CTTs in Non-Randomized Experiments

TABLE V
STATISTICALLY SIGNIFICANT EFFECT SIZES FOR APFD BETWEEN

NON-RANDOMIZED CTTS

Effect Size Effect Magnitude
A B

H W 0.172 medium

H-ADS

SPY 0.120 small
SPY-H 0.210 medium
W 0.265 large
Wp 0.123 small

HSI

H 0.132 small
SPY 0.137 small
SPY-H 0.226 medium
W 0.278 large
Wp 0.148 small

I-ADS

H 0.249 large
H-ADS 0.154 small
HSI 0.140 small
SPY 0.237 large
SPY-H 0.324 large
W 0.348 large
Wp 0.248 large

SPY W 0.202 medium

Wp W 0.213 medium

Randomized Experiments

Our randomized learning experiments were repeated 50
times over parameters k = {0, 1, 2} and l = {2, 3}. While
all combinations of experiments finished successfully, in this
text, we discuss only the results of the experiments with k = 2
and l = {2, 3}, as comparisons with other parameters indicate
at most a negligible difference between the techniques, if any.
In this section, we skip the SPY, H, and SPY-H CTTs as those
cannot be run in a randomized style.

Figure 8 visualizes the differences in average performance
in total cost of all learning experiments. We see no difference
between the TC for any CTT for either l = 2 or l = 3. Statis-
tical analysis between all combinations, listed under Table VI,

show that if there is a statistically significant difference, it is
negligible for all combinations. The entries in table VI list
CTTs in the format “CTT,l”, as k is fixed to 2. In general, the
randomized W CTT seems to perform worse in general against
all CTTs, with the I-ADS CTT with parameters (k, l) = (2, 3)
performing worse against the other techniques. Note, while we
have only listed comparisons for k = 2, this result also holds
for k = 0 and k = 1 as well.

W Wp HSI H-ADS I-ADS

10
3

10
4

10
5

10
6

10
7

TC

L
2
3

Fig. 8. Total Cost of learning per CTT in Randomized mode.

TABLE VI
STATISTICALLY SIGNIFICANT EFFECT SIZES FOR TC BETWEEN

RANDOMIZED CTTS FOR K = 2.

Effect Size Effect Magnitude
A B

H-ADS,2
I-ADS,3 0.019 negligible
W,2 0.022 negligible
W,3 0.020 negligible

H-ADS,3
I-ADS,3 0.017 negligible
W,2 0.019 negligible
W,3 0.018 negligible

HSI,2
I-ADS,3 0.019 negligible
W,2 0.022 negligible
W,3 0.020 negligible

HSI,3
I-ADS,3 0.017 negligible
W,2 0.019 negligible
W,3 0.018 negligible

I-ADS,2
I-ADS,3 0.018 negligible
W,2 0.020 negligible
W,3 0.019 negligible

Next we discuss the results of our APFDL analysis. Figure 9
visualizes results for the APFDL metric for the randomized
experiments. Again, there is no notable difference visible in the
plot. All experiments appear to be very close to the maximum
APFDL of 1.0. Table VII lists the results of our statistical
analysis. The entries in table VII list CTTs in the format
“CTT,l”, as k is fixed to 2. The results of the APFDL metric
seem to follow those of the total cost analysis: the randomized
W CTT performs worse in general, alongside I-ADS with
l = 3. And while there are statistically significant differences
between the performance, the differences are negligible.

W Wp HSI H-ADS I-ADS

0.6

0.7

0.8

0.9

1.0

A
P

FD
_L

L
2
3

Fig. 9. APFDL per CTT in Randomized mode.

TABLE VII
STATISTICALLY SIGNIFICANT EFFECT SIZES FOR APFDL BETWEEN

RANDOMIZED CTTS FOR K=2

Effect Size Effect Magnitude
A B

H-ADS,2

I-ADS,3 0.027 negligible
W,2 0.050 negligible
W,3 0.052 negligible
Wp,3 0.022 negligible

H-ADS,3

I-ADS,3 0.022 negligible
W,2 0.045 negligible
W,3 0.048 negligible
Wp,3 0.017 negligible

HSI,2

I-ADS,3 0.027 negligible
W,2 0.050 negligible
W,3 0.053 negligible
Wp,3 0.023 negligible

HSI,3

I-ADS,3 0.022 negligible
W,2 0.045 negligible
W,3 0.048 negligible
Wp,3 0.017 negligible

I-ADS,2
I-ADS,3 0.020 negligible
W,2 0.042 negligible
W,3 0.044 negligible

I-ADS,3 W,2 0.022 negligible
W,3 0.024 negligible

Wp,2 W,2 0.035 negligible
W,3 0.038 negligible

Wp,3 W,2 0.029 negligible
W,3 0.032 negligible

Variation of k, l does not have a noticeable effect on the
performance of all CTTs in terms of total cost of learning or
APFDL, with all learning experiments finishing successfully.
Randomized CTTs have negligible performance differences,
if any.

Efficiency of CTTs in Randomized Experiments

Overall Difference Between the Best of Each CTT Mode

Finally, we compare the best of the randomized and non-
randomized approaches against each other. For the randomized

experiments, we have chosen (k, l) = (2, 2). Experimental
results for the randomized approach have been averaged across
all 50 runs. As the differences between randomized CTTs
is negligible, we compare the results of randomized vs non-
randomized directly.

Figure 11 visualizes the total cost of learning for both
approaches (Non-randomized is marked as “Fixed”). We note
that the cost of learning for the randomized CTTs is almost
an order of magnitude lower than that of the non-randomized
CTTs for almost all CTTs. Statistical analysis of the results
indicate that the randomized CTTs perform better with a
“medium” effect (Â=0.228).

W Wp HSI H-ADS I-ADS

10
3

10
4

10
5

10
6

10
7

TC

Mode
Fixed
Random

Fig. 10. Total Cost of learning per CTT in the Best of Each Mode. “Fixed”
indicates Non-Randomized.

On the other hand, the APFDL plots in Figure 11 show
the same trend: randomized CTTs all have higher APFDL
values, close to the maximum when compared to their non-
randomized counterparts. Statistical analysis of the results
indicate that the randomized CTTs perform better with a
“small” effect (Â=0.132).

W Wp HSI H-ADS I-ADS
0.5

0.6

0.7

0.8

0.9

1.0

A
P

FD
_L

Mode
Fixed
Random

Fig. 11. APFDL per CTT in the Best of Each Mode. “Fixed” indicates Non-
Randomized.

Overall, our results indicate that randomized CTTs in gen-
eral perform better than non-randomized CTTs both in terms
of total cost of learning and efficiency of learning.

Randomized CTTs reduce total cost of learning by almost
an order of magnitude over non-randomized CTTs while
improving APFDL to almost 1. However, this comes at the
cost of loss of m-completeness.

Comparison of the Best CTTs of Each Execution Mode

Threats to Validity

1) Learning Alogrithms: In our work, we have only consid-
ered the L# learning algorithm. Different learning algorithms
(such as Rivest-Schapire or TTT) may have an influence on our
results. However, given that conformance testing is responsible
for a majority of all OQs in active learning, and all the state-
of-the-art learning algorithms have the same query complexity,
we believe that our results will remain valid.

2) Subject Systems: Our subject systems are simulated
FSMs of communication protocols, which are relatively small
(both in terms of number of states and size of the input
alphabet). Experimental evaluation of different types of sys-
tems, such as control software might affect the results. The
AutomataWiki additionally contains FSMs of software sys-
tems from ASML from the Rigorous Examination of Reactive
Systems (RERS) challenge in 2019 [48]. While there are 46
FSMs available under this category, we do not include these
in our evaluation as these models are extremely sparse: they
typically have a more than 50 inputs and at each state of the
FSMs, only a few (generally 2-4) inputs do not lead to a sink
state. As such, these models are extremely difficult to test, and
to the best of our knowledge, state-of-the-art black-box CTTs
are unable to test these FSMs in a reasonable amount of time.

3) Size of FSMs: Our simulated FSMs are not large. We
have only one FSM of a large industrial component with 3410
states and 80 inputs from [18], thus experimental evaluation
of that FSM would not permit us to draw general conclusions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an empirical evaluation of the
efficiency of CTTs in a setting of automata learning. We
measured the total cost of learning 46 simulated models
of communication protocols and the fault detection capacity
entailed by eight different CTTs. To characterize the state
detection capacity of model learning, we adapt the APFD

efficiency metric from test prioritization research and introduce
the notion of average percentage of faults detected in learning
(APFDL). APFDL is derived from a series of data points
indicating the partial cost for discovering a fraction of the
states of a SUL during a learning experiment.

Our experiments showed a minor difference between the
CTTs in terms of total number of symbols and resets. In
contrast, the fault detection capacity of the CTTs was found
to be significantly distinct, with the I-ADS method as being
the most efficient. Nevertheless, these differences become
negligible when CTTs are applied in randomized mode and
hence, reinforce the positive role of randomness in improving
the efficiency of model learning, despite compromising test
completeness. As future work, we plan to perform more

extensive evaluations of our empirical methodology with larger
models. In particular, the ESM and ASML models in the
AutomataWiki should provide an interesting setting for as-
sessing the fault detection of CTTs in very complex and large
behavioral models.

REFERENCES

[1] D. Angluin, “Learning regular sets from queries and
counterexamples,” Inf. Comput., vol. 75, no. 2, pp. 87–
106, 1987.

[2] ——, “Queries and concept learning,” Mach. Learn.,
vol. 2, no. 4, pp. 319–342, 1987.

[3] M. Isberner, F. Howar, and B. Steffen, “The TTT al-
gorithm: A redundancy-free approach to active automata
learning,” in Runtime Verification: 5th International Con-
ference, RV 2014, Toronto, ON, Canada, September
22-25, 2014. Proceedings, B. Bonakdarpour and S. A.
Smolka, Eds. Cham: Springer International Publishing,
2014, pp. 307–322.

[4] R. Rivest and R. Schapire, “Inference of finite automata
using homing sequences,” Inf. Comput., vol. 103, no. 2,
pp. 299–347, 1993.

[5] F. Aarts, H. Kuppens, G. Tretmans, F. Vaandrager, and
S. Verwer, “Learning and testing the bounded retransmis-
sion protocol,” in Proceedings 11th International Con-
ference on Grammatical Inference (ICGI 2012), Septem-
ber 5-8, 2012. University of Maryland, College Park,
USA, ser. JMLR Workshop and Conference Proceedings,
J. Heinz, C. d. l. Higuera, and T. Oates, Eds., vol. 21,
2012, pp. 4–18.

[6] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager,
“Learning fragments of the TCP network protocol,” in
Proceedings 19th International Workshop on Formal
Methods for Industrial Critical Systems (FMICS’14),
Florence, Italy, ser. LNCS, F. Lang and F. Flammini,
Eds., vol. 8718. Springer, Sep. 2014, pp. 78–93.

[7] K. Aslam, Y. Luo, R. R. H. Schiffelers, and M. van den
Brand, “Interface protocol inference to aid understanding
legacy software components,” in Proceedings of MOD-
ELS 2018 Workshops, ser. CEUR Workshop Proceedings,
R. Hebig and T. Berger, Eds., vol. 2245. CEUR-WS.org,
2018, pp. 6–11.

[8] F. Aarts, J. de Ruiter, and E. Poll, “Formal models of
bank cards for free,” in Software Testing Verification and
Validation Workshop, IEEE International Conference on.
Los Alamitos, CA, USA: IEEE Computer Society, 2013,
pp. 461–468.

[9] F. Vaandrager, “Model learning,” Communications of the
ACM, vol. 60, no. 2, pp. 86–95, Feb. 2017.

[10] F. Howar and B. Steffen, “Active automata learning in
practice,” in Machine Learning for Dynamic Software
Analysis: Potentials and Limits: International Dagstuhl
Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers, A. Bennaceur, R. Hähnle, and
K. Meinke, Eds. Springer International Publishing,
2018, pp. 123–148.

[11] K. Aslam, L. Cleophas, R. R. H. Schiffelers, and
M. van den Brand, “Interface protocol inference to aid
understanding legacy software components,” Softw. Syst.
Model., vol. 19, no. 6, pp. 1519–1540, 2020.

[12] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS
implementations,” in USENIX Security Symp. USENIX,
Aug. 2015, pp. 193–206.

[13] M. Tappler, B. K. Aichernig, and R. Bloem, “Model-
based testing iot communication via active automata
learning,” in 2017 IEEE International conference on soft-
ware testing, verification and validation (ICST). IEEE,
2017, pp. 276–287.

[14] E. Moore, “Gedanken-experiments on sequential ma-
chines,” in Automata Studies, ser. Annals of Mathematics
Studies, vol. 34. Princeton University Press, 1956, pp.
129–153.

[15] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and
N. Yevtushenko, “Fsm-based conformance testing meth-
ods: A survey annotated with experimental evaluation,”
Information & Software Technology, vol. 52, no. 12, pp.
1286–1297, 2010.

[16] D. Lee and M. Yannakakis, “Testing finite-state ma-
chines: State identification and verification,” vol. 43,
no. 3, pp. 306–320, 1994.

[17] F. Howar, B. Steffen, and M. Merten, “From zulu to
rers: Lessons learned in the zulu challenge,” in Lever-
aging Applications of Formal Methods, Verification, and
Validation: 4th International Symposium on Leveraging
Applications, ISoLA 2010, Heraklion, Crete, Greece,
October 18-21, 2010, Proceedings, Part I 4. Springer,
2010, pp. 687–704.

[18] W. Smeenk, J. Moerman, F. W. Vaandrager, and D. N.
Jansen, “Applying automata learning to embedded con-
trol software,” in Formal Methods and Software En-
gineering - 17th International Conference on Formal
Engineering Methods, ICFEM 2015, France, 2015, Pro-
ceedings, ser. LNCS, M. J. Butler, S. Conchon, and
F. Zaı̈di, Eds., vol. 9407. Springer, 2015, pp. 67–83.

[19] A. Simao, A. Petrenko, and N. Yevtushenko, “On re-
ducing test length for fsms with extra states,” Software
testing, verification and reliability, vol. 22, no. 6, pp.
435–454, 2012.

[20] M. Soucha and K. Bogdanov, “Spyh-method: an im-
provement in testing of finite-state machines,” in 2018
IEEE International Conference on Software Testing, Ver-
ification and Validation Workshops (ICSTW). IEEE,
2018, pp. 194–203.

[21] D. Neider, R. Smetsers, F. W. Vaandrager, and H. Kup-
pens, “Benchmarks for automata learning and confor-
mance testing,” in Models, Mindsets, Meta: The What,
the How, and the Why Not? - Essays Dedicated to
Bernhard Steffen on the Occasion of His 60th Birthday,
ser. LNCS, T. Margaria, S. Graf, and K. G. Larsen, Eds.,
vol. 11200. Springer, 2018, pp. 390–416.

[22] F. W. Vaandrager, B. Garhewal, J. Rot, and T. Wißmann,
“A new approach for active automata learning based on

apartness,” in Tools and Algorithms for the Construction
and Analysis of Systems - 28th International Conference,
TACAS 2022, ser. LNCS, D. Fisman and G. Rosu, Eds.,
vol. 13243. Springer, 2022, pp. 223–243.

[23] M. Shahbaz and R. Groz, “Inferring Mealy machines,”
in FM 2009: Formal Methods, Second World Congress,
Eindhoven, The Netherlands, November 2-6, 2009. Pro-
ceedings, ser. LNCS, A. Cavalcanti and D. Dams, Eds.,
vol. 5850. Springer, 2009, pp. 207–222.

[24] M. Merten, F. Howar, B. Steffen, and T. Margaria,
“Automata learning with on-the-fly direct hypothesis con-
struction,” in Leveraging Applications of Formal Meth-
ods, Verification, and Validation - International Work-
shops, SARS 2011 and MLSC 2011. Revised Selected Pa-
pers, ser. Communications in Computer and Information
Science, R. Hähnle, J. Knoop, T. Margaria, D. Schreiner,
and B. Steffen, Eds., vol. 336. Springer, 2011, pp. 248–
260.

[25] K. Sabnani and A. Dahbura, “A protocol test genera-
tion procedure,” Computer Networks and ISDN systems,
vol. 15, no. 4, pp. 285–297, 1988.

[26] S. T. Vuong, “The uioυ method for protocol test sequence
generation,” in Proc. of 2nd IFIP Int. Workshop on
Protocol Test Systems (IWPTS’89), 1989, pp. 161–175.

[27] T. Chow, “Testing software design modeled by finite-state
machines,” vol. 4, no. 3, pp. 178–187, 1978.

[28] M. Vasilevskii, “Failure diagnosis of automata,” Cyber-
netics, vol. 9, no. 4, pp. 653–665, 1973.

[29] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou,
and A. Ghedamsi, “Test selection based on finite state
models,” vol. 17, no. 6, pp. 591–603, 1991.

[30] A. Petrenko, “Nondeterministic state machine in protocol
conformance testing,” Protocol Test Systems, pp. 363–
378, 1994.

[31] A. Petrenko and N. Yevtushenko, “Testing from partial
deterministic fsm specifications,” IEEE Transactions on
Computers, vol. 54, no. 9, pp. 1154–1165, 2005.

[32] N. Yevtushenko and A. Petrenko, “Test derivation
method for an arbitrary deterministic automaton, auto-
matic control and computer sciences,” 1990.

[33] M. Soucha and K. Bogdanov, “State identification se-
quences from the splitting tree,” Information and Soft-
ware Technology, vol. 123, p. 106297, 2020.

[34] A. Gill et al., “Introduction to the theory of finite-state
machines,” 1962.

[35] G. Gonenc, “A method for the design of fault detection
experiments,” IEEE transactions on Computers, vol. 100,
no. 6, pp. 551–558, 1970.

[36] A. Simão and A. Petrenko, “Fault coverage-driven incre-
mental test generation,” The Computer Journal, vol. 53,
no. 9, pp. 1508–1522, 2010.

[37] M. Dorofeeva and I. Koufareva, “Novel modification of
the w-method,” Bulletin of the Novosibirsk Computing
Center. Series: Computer Science, vol. 2002, pp. 69–80,
2002.

[38] R. Dorofeeva, K. El-Fakih, and N. Yevtushenko, “An

improved fsm based conformance testing method,” in
Proc. of the IFIP 25th International Conference on
Formal Methods for Networked and Distributed Systems,
pp. 204–218.

[39] W. Smeenk, J. Moerman, F. Vaandrager, and D. N.
Jansen, “Applying automata learning to embedded con-
trol software,” in Formal Methods and Software En-
gineering, M. Butler, S. Conchon, and F. Zaı̈di, Eds.
Cham: Springer International Publishing, 2015, pp. 67–
83.

[40] M. Soucha, “Testing and active learning of resettable
finite-state machines,” Ph.D. dissertation, University
of Sheffield, January 2019. [Online]. Available: https:
//etheses.whiterose.ac.uk/24370/

[41] B. K. Aichernig, M. Tappler, and F. Wallner, “Bench-
marking combinations of learning and testing algorithms
for active automata learning,” in Tests and Proofs,
W. Ahrendt and H. Wehrheim, Eds. Cham: Springer
International Publishing, 2020, pp. 3–22.

[42] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test
Case Prioritization: A Family of Empirical Studies,”
IEEE Transactions on Software Engineering, vol. 28,
no. 2, pp. 159–182, Feb. 2002, place: Piscataway, NJ,
USA Publisher: IEEE Press.

[43] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager,
“Combining Model Learning and Model Checking to
Analyze TCP Implementations,” in Computer Aided Ver-
ification, ser. LNCS, S. Chaudhuri and A. Farzan, Eds.
Cham: Springer International Publishing, 2016, pp. 454–
471.

[44] A. T. Endo and A. Simao, “Evaluating test suite char-
acteristics, cost, and effectiveness of FSM-based testing
methods,” Information and Software Technology, vol. 55,
no. 6, pp. 1045 – 1062, 2013.

[45] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter,
F. Vaandrager, and P. Verleg, “Model learning and model
checking of SSH implementations,” in Proceedings of the
24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, ser. SPIN 2017. New York,
NY, USA: ACM, 2017, pp. 142–151.

[46] M. Schuts, J. Hooman, and P. Tielemans, “Industrial
experience with the migration of legacy models using a
dsl,” in Proceedings of the Real World Domain Specific
Languages Workshop 2018, ser. RWDSL2018. New
York, NY, USA: Association for Computing Machinery,
2018.

[47] M. Soucha, “FSMlib - A C++ library for handling Finite-
State Machines, their testing and learning,” Nov. 2021.
[Online]. Available: https://github.com/Soucha/FSMlib

[48] M. Jasper, M. Mues, A. Murtovi, M. Schlüter, F. Howar,
B. Steffen, M. Schordan, D. Hendriks, R. Schiffelers,
H. Kuppens, and F. W. Vaandrager, “Rers 2019: Com-
bining synthesis with real-world models,” in TACAS,
D. Beyer, M. Huisman, F. Kordon, and B. Steffen, Eds.
Cham: Springer International Publishing, 2019, pp. 101–
115.

https://etheses.whiterose.ac.uk/24370/
https://etheses.whiterose.ac.uk/24370/
https://github.com/Soucha/FSMlib

	Introduction
	Background and Related Work
	Learning Algorithms
	Conformance Testing
	Overview of CTTs
	Related Work

	Methodology
	Average Percentage of Faults Detected During Learning

	Experimental Evaluation
	Subject Systems
	Model Learning and Testing Implementations
	Parameters for Conformance Testing
	Metrics

	Discussion
	Learning Alogrithms
	Subject Systems
	Size of FSMs

	Conclusions and Future Work

