
Submitted to:
GCM 2022

© Albers, Damasceno & Strüber
This work is licensed under the
Creative Commons Attribution License.

A Lightweight Approach for Model Checking
Variability-Based Graph Transformations

Mitchell Albers
Radboud University

Nijmegen, The Netherlands

mitchell.albers@ru.nl

Carlos Diego N. Damasceno
Radboud University

Nijmegen, The Netherlands

d.damasceno@cs.ru.nl

Daniel Strüber
Chalmers | University of Gothenburg, SE

Radboud University Nijmegen, NL

danstru@chalmers.se

Graph transformation systems often contain large numbers of similar rules, leading to maintenance is-
sues as well as performance bottlenecks during rule applications. Previous work introduced variability-
based graph transformations as a paradigm for explicitly managing variability in rules, successfully
addressing these issues. However, no previous work investigated whether variability-based graph
transformations can also lead to benefits during the automated analysis of graph transformations,
particularly during model checking, in which the main performance bottleneck is the combinatorial
explosion arising during state space exploration.

In this paper, as an initial approach for model checking of variability-based graph transforma-
tions, we present an extension of an existing symbolic model checking technique. The existing
technique, called Gryphon, converts the graph transformation system into a symbolic encoding and,
from there, into the input format of a hardware model checker. We adapt Gryphon’s encoding to
incorporate information on variability, which reduces the size and complexity of the overall encod-
ing since it is now derived from a smaller set of rules (some of them being variability-based rules
that represent several similar rules). In a preliminary evaluation, we show that our extension leads to
performance benefits in a standard model checking scenario.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm that promotes the use of models
and transformations as primary artefacts, allowing for the abstraction of non-essential aspects [23]. MDE
promotes model transformations as a key enabling technique for automatically generating models to
reduce errors and save implementation efforts. One of the main paradigms in model transformation is
algebraic graph transformation (AGT [16]) which allows the specification of transformation rules in a
high-level, declarative manner using model transformation languages. Sometimes, one wants to specify
many similar transformation rules that have many commonalities but differ in some parts. In that case,
these similarly-structured rules can be merged while preserving their structure by specifying variability
points on diverging elements, introducing variability on transformation rules. Therefore, by expressing
variability points on diverging graph elements in transformation rules, we can merge rules and keep the
number of total rules minimal. Doing so, one obtains a new concept of graph transformation rules with
variability, called variability-based graph transformation in previous work [41]. As a further benefit, one
can improve the performance of such graph transformations by providing a variability-aware execution
mode that can make the rule application procedure faster and more scalable [41].

When verifying the correctness of regular AGT rules, model checking has proven to be a powerful
tool of increasing interest [36]. However, current state-of-the-art model checking tools do not support
variability-based graph transformation. But why would it be desirable if they did so? Model checking
tools currently do not consider variability, implying that each rule variant has to be made explicit in

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

a separate rule. From a model checking perspective, this leads to redundant computational effort when
dealing with rules with many shared actions, resulting in a sub-optimal model checking approach in terms
of runtime behaviour. A model checking approach that addresses variability as part of the model checking
procedure without considering each rule variant as a separate rule could lead to runtime improvements.

To our knowledge, no previous work has addressed variability in model checking of graph transfor-
mation systems. Related work (discussed in Section 6) addresses variability in model checking for other
formalisms, such as labelled transition systems [14, 13] and Markov decision processes [11].

This paper introduces an initial approach for model checking graph transformations with variability.
We propose an extension of the open-source, lightweight symbolic model verification technique Gryphon
[19]. Gryphon uses a symbolic encoding to represent graph transformation systems to bounded first-
order relational logic. Gryphon assumes a bounded universe, implying that it does not support arbitrary
creation and deletion of nodes. However, it does support negative application conditions (NACs) as well
as arbitrary creation and deletion of edges. We study the working assumption that addressing variability
explicitly, as part of the model checking procedure, may help to increase the performance of the model
checker, compared to enumerating all rule variants explicitly and feeding them as input to the model
checker. Thereby, we will be answering the following research question:

RQ: Does the direct support for variability-based rules in Gryphon decrease the execution time for
model checking of graph transformations of the kind supported by Gryphon?

To answer this research question, we propose an extension of Gryphon’s symbolic encoding that
supports variability-based graph transformations. We further present an implementation of the resulting
encoding, leading to the first implementation of a variability-based model checking approach for graph
transformations. Like Gryphon, the resulting approach is restricted to a certain type of graph transforma-
tions: double-pushout graph transformations, restricted to rules that can create and delete edges and can
have NACs. The considered transformation kind is expressive enough to support previous scenarios from
the literature on model checking of graph transformations, such as dining philosophers, interlocking rail-
way systems, and pacman (provided as examples in Gryphon’s presentation [18, 19]). However, several
other examples from the literature cannot be handled by our approach, such as circular buffers [35],
malaria surveillance [8], knowledge graph management [9], and health information system [7] that re-
quire creation, deletion, cloning and/or merging of nodes.

Using the encoding, we answer the research question in an empirical performance evaluation. This
evaluation compares the execution time of model checking with standard Gryphon and a Gryphon version
using the modified encoding.

2 Preliminaries

Graph transformations

We consider the paradigm of algebraic graph transformations (AGT), in particular the formalization
of graph morphisms and graph transformation rules based on the double-pushout approach [16]. A
graph morphism m : G→ H is a structure-preserving mapping between two graphs, in the sense that
edges are mapped in a way that respects their source and target. A transformation rule t is defined as
t = (L l←− I r−→ R, Nac), consisting of the following elements: a left-hand side graph L and a right-hand
side graph R, along with two graph morphisms l and r, both being inclusions, an interface graph I,
satisfying I ⊆ L and I ⊆ R, and a set Nac (negative application conditions) of graph morphisms of the

Albers, Damasceno & Strüber 3

form n : L→ N. In the rest of this paper, we consider a restricted notion of rules in which the node sets
of L, I, and R are identical.

Rules are applied to a given host graph in order to obtain a result graph. The application of a trans-
formation rule t on a given start graph G assumes an available injective graph morphism m : L→ G that
matches L to G. To support node deletions in a consistent way, m needs to fulfill a dangling edge con-
dition: if a node n is to be deleted by the rule application, the rule application has to delete all adjacent
edges of the node as well. For the restricted kind of rules we consider (which cannot delete or create
nodes), this condition is always fulfilled. Furthermore, m needs to satisfy the NACs. Intuitively, each
NAC graph N is interpreted as a pattern whose existence in the host graph is forbidden. More formally,
it has to be checked that for none of the NACs there exists morphism n′ : N → G s.t. m = n′ ◦ n. If m
fulfills these conditions, it is called a match.

Given a match, a rule application is executed as follows: First, for each graph element that is part of
L and that is not part of the interface graph I, the element identified by m is deleted. Second, for each
graph element that is part of R and that is not part of interface graph I, a graph element is created; new
graph elements are “glued” to existing ones as specified by m and r.

The graphs supported by our technique can have types and attributes. We omit providing details of
the formalization of these concepts; the interested reader is referred to Ehrig et al.’s [16] formalization.

Example. We consider the Dining Philosopher’s problem as presented in [19], which was originally de-
signed to illustrate challenges concerning deadlocks, making it a well-suited problem for model check-
ing. The Dining Philosopher’s problem starts out with a group of n philosophers around a table on which
there are n plates and n forks (i.e., one fork on the left, and one fork on the right of each philosopher). A
philosopher can either be hungry, thinking, or eating. Whenever a philosopher transitions from thinking
to hungry, it wants to eat. In order for a philosopher to be able to eat, it is required to have 2 forks
assigned to that philosopher. Whenever a philosopher is done with eating, it releases both forks so that
another philosopher can take them. Figure 1 captures a standard specification of the Dining Philoso-
pher’s problem in terms of graph transformation rules, inspired by [19]. In this example, the following
five graph transformation rules are considered:

• Rule hungry transitions a philosopher’s state from thinking to hungry.

• Rule left leads to a philosopher picking up their left fork (indicated by holds), provided that no
philosopher (including themselves) already holds that fork.

• Rule right leads to a philosopher picking up their right fork (indicated by holds), provided that no
philosopher (including themselves) already holds that fork.

• Whenever a philosopher is assigned to both a left and right fork, they can start eating. This be-
haviour is specified in rule eating.

• Whenever a philosopher is done eating, they release both forks, which is specified in rule release.

Note that these transformation rules follow an integrated syntax with respect to the formal definition;
graph elements are annotated with labels. The labels delete, preserve, and create represent the sets L\I, I,
and R\ I, respectively. The label forbid, together with a hash symbol and the index of a NAC, represents
the set N \ L for the given NAC. In the example, rule left has two NACs, the first of them (forbid#1)
ensuring that philosophers cannot pick up a fork that they already hold.

4 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

(a) Rule left (b) Rule right

(c) Rule hungry (d) Rule eating

(e) Rule release

Figure 1: Graph transformation rules of the Dining Philosopher’s problem

Figure 2: Variability-based rule takeFork

Albers, Damasceno & Strüber 5

Variability-Based Graph Transformations

Variability-based graph transformations are an extension of standard graph transformations, which allows
to express several similar rules in a “single-copy” representation. Individual, diverging elements (in the
scope of this paper, edges) that are specific to some, but not all of the rules are annotated with presence
conditions. A presence conditions is a boolean formula over a given set of features F (a.k.a. variation
points), specifying a condition under which an annotated element is present. Given a variability-based
rule, flat rules can be derived by binding each feature from F to either true or false, and removing those
elements whose presence condition evaluates to false.

A variability-based transformation rule t̂ is formalized as t̂ = (t, F , pc), where t is a standard graph
transformation rule (the “maximal rule” with all elements), and pc : (Lt ∪Rt)→ Bool(F) is a pres-
ence condition function which maps rule elements to a propositional formula over the set of features F
(defaulting to true, unless explicitly stated). To apply a variability-based graph transformation rule, intu-
itively, the first step is to configure it, that is, bind each of its features to either true or false, and remove
all elements from t whose presence conditions evaluate to false. Configuring a variability-based graph
transformation rule that way yields a flat rule that can be applied in the standard way (described above).
The configuration can be either done manually by the user, or automatically by the configuration engine,
where the latter leads to the notion of a variability-aware execution engine described in [41, 43]. Editing
variability-based rules in a user-friendly way is supported by a dedicated extension of Henshin [42].
Example. When taking a closer look at rules left and right from Figure 1, we observe that these rules share
a similar structure with an exception on the edges that are annotated with ‘left’ and ‘right’. Therefore, we
can merge these similar-structured rules and introduce a variability-based rule takeFork = (t, F , pc) to
represent the designation of forks to a philosopher. Transformation rule t consists of all the rule elements
from rule left and right, such that it is “maximal” in the sense that it contains all rule elements. We can
then annotate the diverging elements from the other rules with presence conditions over the set of features
F = { fle f t}. Thereby, we annotate edges left and right with presence conditions pc(le f t) = fle f t and
pc(right) = ¬ fle f t , respectively as shown in Figure 2. To be able to produce the original rules, both
presence conditions may not evaluate to false or true at the same time—which is the case here, because
they are mutual exclusive. For more complicated examples, one would need a configuration constraint
to avoid illegal configurations (a.k.a. feature selections). Nonetheless, the concept of configuration
constraints is out of scope of this paper.

Gryphon

The verification technique Gryphon [19] provides a model checking approach for model-driven software
systems, whose static structure is defined by models built with the Eclipse Modeling Framework and
whose behaviour is defined by graph transformation rules built with the Henshin API [2, 39]. From this
static structure and behaviour models, Gryphon constructs a relational transition system (an encoding
of a transition system using first-order logic formulas) which then can be checked by hardware model
checkers to verify both safety and reachability properties. Gryphon does not support for the specifica-
tion of custom LTL/CTL properties, but considers only one CTL reachability property in the form of
∃♢φ , were φ is a graph state to be reached. By duality, we may negate this formula and check for the
unreachability or safety of φ , which can be expressed by ∀□¬φ .

Gryphon uses a symbolic encoding to encode an input graph, along with graph transformation rules,
into relational formulas (i.e., first-order logic) that describe the model transformations. In essence, the
encoding consists of two steps.

6 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

Figure 3: Scheme of a relational formula produced from a graph transformation rule (based on [19])

First, relational variables are generated. This entails assumes that a type graph GT = (VT , ET) is
given with nodes VT representing node types and edges ET representing edge types. The creation of
these relational variables is done by using the function relgen : VT ∪ ET → Rel which generates for
each node type a unary relational variable, and for each edge type a binary relational variable. The
unary relational variables are included as atoms in a fixed universe, which consists of a sequence of
uninterpreted atoms A. This universe is initially derived from the initial model, such that for every
object in the initial model, there exists a corresponding atom in the universe. The Gryphon technique
considers a bounded, first-order logic, meaning that each relational variable is assigned an upper bound,
and optionally a lower bound. Bounds are specified over the set of atoms in the universe [19]. In order to
assign upper and lower bounds to unary relational variables, we use the function ⊔ : Rel→P(A); upper
bounds of binary relational variables arise from the product of edge source’s and target’s upper bounds.

Then, from these relational variables, graph transformation rules are translated into first-order, rela-
tional formulas. These relational formulas are generated by deriving a formula1

Ft := Pre(L,Nac,R) =⇒ Post(L,R)

for each graph transformation rule t : (L← I→ R, Nac). The function Pre : G×G×G×G→ F takes a
quadruple of graphs and produces a conjunction of relational formulas that mimic the match conditions
of the transformation’s left-hand side and NACs. Moreover, Pre also takes injectivity constraints into
account. The function Post : G×G→ F takes a pair of graphs and produces a conjunction of relational
formulas that mimic how the rule application changes the assumed host graph via deletion and addition.
The resulting formulas can be modification or non-modification constraints, in the sense that specify
what needs to be changed in the host graph or what needs to remain unchanged. The formula Ft can then
be expressed by the scheme shown in Figure 3, which is based on an example with the relational variables
{A, B, C, D, E}. A more comprehensive introduction of the relational encoding is found in [19].

Internally, Gryphon constructs the first-order relational formula from Figure 3 by using the KOD-
KOD API [30], which is then used to translate it to a propositional formula (exploiting the assumption
that the universe is bounded, which makes this translation possible). After that, this propositional for-
mula is rewritten into an and-inverter graph (AIG)—a boolean circuit consisting of only ’and’ and ’not’
gates—and stored in the AIGER format (see Figure 4, [19]). This step is aimed to foster interoperability
as several model checkers can read this format. For the scope of this research, we consider the Incremen-
tal Inductive model checker (IIMC, [24]). Properties are specified at the graph level, as Henshin “check
rules” (non-modifying rules), and translated to the same format.

1This formula originates from Gryphon’s encoding [19], which, in addition, considers positive application conditions–out
of the scope of this research.

Albers, Damasceno & Strüber 7

Figure 4: Gryphon’s workflow architecture (from [19]). Grayed components represent external tools

3 Motivating Example

In this section, we will give a motivating example to illustrate how model checking of graph transfor-
mations with variability can be improved by explicitly using variability-related information. For this
example, we consider the Dining Philosopher’s problem with variability as presented in Section 2.

For model checking, we consider a very simple reachability property in which we want to check if
it is possible whether a philosopher can be in the state eating, expressed as the following CTL prop-
erty: ∃♢eating. When considering the variability-based rule takeFork from Figure 2 in which we have
specified presence conditions pc(le f t) = fle f t and pc(right) = ¬ fle f t , we observe that this can be easily
done by applying the rule variants for picking up the left and the right fork. This can be achieved by
applying rule takeFork twice; once in which fle f t is set to true, and once by applying takeFork in which
fle f t is set to false. This evaluates the corresponding presence conditions to true, making it possible for a
philosopher to take the corresponding fork(s). Consequently, given this information, the model checker
is able to conclude that it is now possible for a philosopher to eat as both forks can be assigned to it,
which means that rule eating can be applied, satisfying the reachability property. However, when taking
a closer look at the rule takeFork, we observe that this rule tries to match a single fork as a left and a right
fork to a philosopher. Therefore, we consider presence conditions to preserve the semantics relative to
having two separate rules (i.e., one for picking a left fork and one for a right fork). These considerations
would lead to a variability-aware model checking algorithm that explicitly addresses the rule variants
expressed by a variability-based rule as part of its internal workings.

Without dedicated support for variability-based rules as part of the model checking algorithm, one
could still supporting takeFork, by enumerating all possible configurations for the features F , and cre-
ating a rule for each of them, and feeding the rules as input to a standard model checker. In general, this
leads to an exponential increase in the number of rules, depending on the number of features and presence
conditions that are annotated inside the rules. Feeding more rules with lots of redundant information into
the model checker is likely to make the model checking procedure less efficient.

Therefore, by instead using the information contained in the variability-based rules explicitly during

8 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

the model checking procedure, we expect to obtain efficient support for variability in graph transforma-
tion rules, as we can keep the number of rules minimal and avoid expressing information redundantly.

4 Variability Encoding

Gryphon’s encoding encompasses the use of relational formulas to mimic the behaviour of graph trans-
formations. This section describes an extension of this encoding to support graph transformation rules
with variability.

Recall from Section 2 that a variability-based graph transformation rule consists of a “maximal
rule” t, a presence condition function pc, and a set of features F that can be used to annotate graph
elements with presence conditions in the form of a boolean formula over the set of features F . The
intention of annotations on a graph transformation rule with presence conditions is to specify an addi-
tional constraint on the rule’s matching behaviour. Thereby, the evaluation of a rule’s set of presence
conditions, determines which rule variant is applied.

To specify this variability-based matching behaviour within Gryphon’s encoding, we first introduce
a relational variable for each feature. Similarly to the function relgen as described in Section 2, we intro-
duce the function frelgen : F → Rel, which maps features to unary relational variables. These relational
variables are then also included in the set of atoms A. This step is required for constructing relational
formulas, in which we can refer to the atoms in the universe that correspond to the features as relational
variables.

Recall from Section 2 that relational variables must be bounded. Since feature variables are used to
construct presence conditions in the form of propositional formulas, they are upper bounded by boolean
values (i.e., true and false). As we are now able to generate and bound relational feature variables from
graph annotations, we consider the function pcrelgen : Bool(F)→Bool(Rel) that maps a boolean formula
of features to a relational formula, representing a presence condition.

Gryphon’s encoding as discussed in Section 2, considers the formula Ft , following the formula gener-
ation scheme as exemplified in Figure 3. This formula uses the function Pre to create a relational formula
that mimics the matching conditions of the left-hand side of a graph transformation rule t. The function
Pre consists of an explicit formula match that contains the matching constraint of a transformation rule.
Since we are interested in embedding the presence conditions into the matching constraints, we imply
that we want our presence condition to be a dependent variable of this matching. More concretely, we
want to make the matching constraints of graph elements dependent on these presence conditions such
that: whenever the presence conditions can be met, then the actual matching can also be done. This can
be easily specified as an implication between the presence condition and the matching constraints of the
corresponding graph element. For the scope of this research, we only consider edges to be annotated
with presence conditions. Therefore, we translate every edge e with src(e) = c and trg(e) = d to the
following matching constraint: (c→ d)⊆Ce, where Ce is a binary relational variable that represents the
edge. However, whenever an edge annotated with a presence condition, we want to embed this informa-
tion in this edge. Therefore, we add our presence condition pc to the matching constraint of this edge
as follows: pc→ ((c→ d)⊆Ce). By doing so, the matching constraint is dependent on the presence
condition; if the presence condition is met, then this reference can be matched.

We argue for the soundness of our encoding informally, leaving a rigorous soundness proof to fu-
ture work: In [41], we introduced a notion of variability-based rule applications, which supports the
application of a variability-based rule to a graph. We showed the soundness of variability-based rule ap-
plication, i.e., its equivalence to applying each of the rule variants expressed by the variability-based rule

Albers, Damasceno & Strüber 9

to the graph, using traditional rule applications. We argue that Gryphon’s standard encoding captures
the notion of traditional rule application, whereas our modified encoding captures variability-based rule
application. More specifically, including presence conditions of edges into the encoding as we do allows
variability-based matches to be identified. Hence, we can benefit from our earlier soundness proof.

Example. Consider the dining philosopher problem with variability-based rules, as discussed in the mo-
tivating example in Section 3. In this example, we consider F = { fle f t} as the set of features that
are present in rule takeFork. These features are also added as uninterpreted atoms in the universe.
From this, we can construct the following relational feature variable Fle f t = frelgen(fle f t) and bind it by
⊔(Fle f t) = {true, f alse}. In this case, rule takeFork is annotated with fle f t on edges left and right. There-
fore, we have presence conditions pcrelgen(pc(le f t)) = pcrelgen(fle f t) = Fle f t and pcrelgen(pc(right)) =
pcrelgen(¬ fle f t) = ¬Fle f t for edge left and right, respectively. The references for edge le f t and right are
translated as the following matching constraints:

Fle f t →
(
(p→ f)⊆ Phille f t

)
, src(le f t) = p ∈ Phil, trg(le f t) = f ∈ Fork

¬Fle f t →
(
(p→ f)⊆ Philright

)
, src(right) = p ∈ Phil, trg(right) = f ∈ Fork

Note that Phil corresponds to the class ‘Philosopher’, and Fork to the class ‘Fork’ in the transformation
rule takeFork, where p is a philosopher object and f is a fork object in the matching host graph.

5 Evaluation

This section concerns an evaluation in the form of a runtime comparison between the model check-
ing procedure with variability encoding and the standard Gryphon approach without variability-based
graph transformation rules. For this evaluation, we again consider the dining philosopher’s problem as
described in Section 2. Thereby, we consider the system of transformation rules from Figure 1, con-
sisting of rules: left, right eating, hungry, release. For fair comparison, we compare this system of
transformation rules with the same system, but instead of using the rules left and right, we consider the
variability-based rule takeFork from Figure 2. Moreover, we consider one single reachability property
that checks whether it is possible for a philosopher to be in an eating state (i.e., ∃♢eating). We reuse
the provided specification of this property from the original Gryphon implementation of the case, using
a non-changing rule to specify the graph pattern part of the constraint.

For this runtime comparison, we are interested in the following two metrics: (1) the time of the actual
model checking to conclude the property and (2) the total execution time of the tool (i.e., including rule
translation, etc.). We can then gain insight into how much time was spent on solving and how much time
was spent on translating the models. During this comparison, we consider five different input graphs,
consisting of 10, 20, 30, 40, and 50 philosophers. For accuracy, we have executed the model checking
tool several times over each input model and for each model type; 30 times with variability-based graph
transformation rules (VAR), and 30 times without variability-based rules (STD).

The runtime comparison between both model checking approaches is depicted in Figures 5, 6, and
7, covering total runtime, solving time, and translation time, respectively. From these figures, we gener-
ally observe that model checking with support for variability outperforms model checking without that
support on larger input models in terms of solving time, but not on small input models. For translation
time, we observe that a variability-based rules increases performance for every input model. Moreover,
the main contribution to total runtime comes from solving, whereas rule translation affects total runtime
performances non-significantly.

10 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

Figure 5: Total runtime for standard (STD) and variability-aware (VAR) model checking.

Figure 6: Solving time for standard (STD) and variability-aware (VAR) model checking.

Albers, Damasceno & Strüber 11

Figure 7: Translation time for standard (STD) and variability-aware (VAR) model checking.

When taking a closer look at the metrics of our runtime comparison from Figures 5, 6, and 7, we
consider the mean µ and standard deviation σ to give insightful information regarding our obtained
evaluation result (see Table 1). Note that lines that are written in bold represent the metrics that had the
best overall performance for a given model type (i.e., STD or VAR) and the corresponding input model.
Based on the mean average total runtime, we observe a slowdown of 11% on VAR relative to STD for an
input model of 10 philosophers. This slowdown increases to 23% for an input model that considers 20
philosophers. At 30 philosophers, we start to observe a turning point as we see a speedup of 11%. This
speedup increases substantially for an input model that considers 40 philosophers towards 39% and, for
an input model with 50 philosophers, to 45%.

Regarding our research question RQ, we can conclude that variability-aware model checking can
significantly improve performance, up to a speedup of 45%, even for a seemingly simple case with only
two similar rules that were represented as one variability-based rule. These savings can be explained from
the specifics of the case that, however, might be transfer to other similar cases as well: The variability is
included in the most complicated (because NAC-including) pair of rules (i.e., by merging rules left and
right into takeFork), which also leads to a particular complicated encoding of these rules as part of the
overall encoding. By representing these two rules using one variability-based rule, we get a shorter and
less complex overall encoding.

While a formal performance argumentation based on the encoding’s complexity would need to ad-
dress the internal workings of the underlying hardware model checker, which is outside our scope, we
empirically observe that the less complex encoding leads to performance improvements for larger in-
stances. Most of the observed savings are made in the solving time, which, especially for larger instances,
is the computational bottleneck of the overall process. We expect these observed savings to increase even

12 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

Total Runtime (ms) Solving Time (ms) Translation time (ms)
Input Model Model Type µ σ µ σ µ σ

10 Philosophers
STD 795 25 371 23 385 10
VAR 879 43 477 43 376 8

20 Philosophers
STD 5534 44 4901 35 539 23
VAR 6803 50 6691 54 489 15

30 Philosophers
STD 28385 2423 27396 2426 686 25
VAR 25662 459 24368 451 654 34

40 Philosophers
STD 91031 2653 89880 2646 939 35
VAR 65291 1472 59473 1472 812 48

50 Philosophers
STD 234842 11868 232038 11830 1377 63
VAR 162486 18771 142951 18774 1213 80

Table 1: Performance evaluation results: runtime comparison between STD and VAR.

more for cases with a greater amount of variability.

6 Related Work

Studies related to ours are on model checking for software product lines [46], in particular product-based
[29, 28, 15, 1] and family-based analysis [22, 12, 6]; and model checking [25, 37, 36, 35] and analysis
[21, 26, 34] of graph transformations.
Product-Based Model Checking. In product-based model checking, product-specific models of a prod-
uct line are generated as separate entities and individually verified, each using a standard verification
technique which may be optimized or not. In unoptimized approaches, product variants are verified each
time they are derived [29]. To improve scalability and reduce redundant computations, model check-
ing techniques can be optimized for incremental verification [46] with richer notions of features, e.g.
conservative features that do not remove behaviour [15]; or aspects, e.g., spectative, regulative, and in-
vasive [28]. Sampling-based model checking aims at reducing the verification problem by selecting a
subset of valid products [47]. They are likely to find defects quickly, but may miss defects due to its
incompleteness [1]. Instead, our technique for model checking graph transformations is family-based.
Family-Based Model Checking. The main problem with product-based analyses are redundant compu-
tations over shared assets. Then, to achieve a more efficient verification, family-based model checking
incorporates domain artifacts, such as feature models, to analyze a family model with respect to the
variability model and one or more properties. For a given property, a family-based model checker ana-
lyzes whether the property is fulfilled by all products. If not, the model checker provides a propositional
formula specifying those products that violate the property [22]. As standard model checking, their
family-based variants can operate directly on source code or on an abstraction of a system [6], such as
featured transition systems [12]. Our work differs from the aforementioned literature on family-based
analysis by operating on graph transformations as our abstraction.
Model Checking Graph Transformations. The basics of verifying graph transformation systems by
model checking have been studied thoroughly by Heckel in [25]. More recently, approaches for model
checking graph transformation systems have been also extended to more complex scenarios, such as com-
positionality, and probabilistic, timed behaviour [33, 34]. Typically, graphs can be interpreted as states
and rule applications as transitions in a transition system [36]. From a graph transformation perspective,

Albers, Damasceno & Strüber 13

there are two main approaches: CheckVML [37] and Groove [35]. The main idea of CheckVML [37] is
to exploit off-the-shelf model checker tools, like SPIN [5], by translating a graph transformation system
and property graphs into their Promela and temporal logic equivalents to carry out the formal analysis. In
contrast, in the GROOVE approach [35], the core concepts of graphs and graph transformations are used
all the way through model checking by explicitly representing and storing states as graphs, and transi-
tions as applications of transformation rules. Also, since properties are specified in a graph-based logic,
the theory and tool support of standard model checkers [3] may not be applied immediately and graph-
specific model checking algorithms should be developed. We contribute the first approach to address
variability in the model checking of graph transformations.
Analyzing Graph Transformations. In addition to model checking, there are various other techniques
to analyze graph transformation systems. For an overview in this topic, we refer the interested reader
to [26]. According to Heckel and Taentzer [26], techniques to analyze graph transformation systems
may address conflict and dependency analysis – to determine the possibility of conflicts or dependen-
cies between rules, termination analysis – to establish the absence of infinite transformation sequences,
constraint verification and enforcement – to derive and check weakest preconditions, and graph parsing
– to construct a derivation for a graph based on grammar rules. One of the severe issues in analyzing
graph transformations is that graphs are typically specified monolithically and, for large models, it can
quickly undermine the advantage of visualisation, and lead to state space explosion [21]. To address this
issue, the analysis of graph transformation systems can also be enriched with notions of compositionality
[21, 34]. Our work addresses this problem by matching and merging similar-structured transformation
rules and annotating their divergences with presence conditions. Within the scope of infinite-state or
potentially-large systems, description logic [8], symbolic execution [38], and over/under-approximation
[4, 20] contribute to the design of push-button technologies for verifying graph transformation systems
in a timely manner. Our technique is suitable for cases where the explicit representation of states is
practical, in which our preliminary evaluation shows reduced computational effort. It can be seen as a
complement to verification techniques suitable for infinite-state spaces [27].

7 Conclusion

In this paper, we have presented a variability encoding as an extension of the lightweight symbolic
model checking technique Gryphon. We have introduced a minimal model checking approach that can
use variability information when it is explicitly encoded in graph transformations rules, introducing an
initial approach to model checking of variability-based graph transformations. This variability encoding
tries to mimic the matching behaviour of multiple rule variants. Moreover, we have given a motivating
example that shows how including features as part of the model-checking procedure can result to increase
performance relative to enumerating all rule variants of a given transformation rule.

Considering our research question, we have empirically evaluated the resulting model checking ap-
proach for variability-based graph transformations. This evaluation was performed by a runtime compar-
ison with a standard model checking approach without variability-based rules (see Table 1). From this
evaluation, we observe moderate improvements in terms of performance on solving time on larger input
models. Therefore, we may conclude that a variability-based execution mode shows potential in model
checking of graph transformations. We expect that this improvement will become more significant when
including more variability-based graph transformation rules with more features and presence conditions
for a given system of transformation rules.

14 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

8 Limitations and Future Work

Our presented model checking approach is far from complete and is to be considered a proof of concept.
Important future directions for extending our present, Gryphon-based, approach include:

• A rigorous argumentation for the soundness and performance of our approach. For soundness, this
entails proving that our variability-based execution mode leads to the same results as the classical
one—a conjecture currently supported by our informal argumentation and automated testing in
our evaluation scenario. A performance proof addressing the internal workings of the underlying
hardware model checker could be used to explain our empirically observed performance benefits.

• Increasing the expressiveness of supported variability-based transformations, to support configu-
ration constraints as well as arbitrary propositional formulas as presence conditions. While the
current implementation does not support constraints and only supports simple presence conditions
consisting of a singular feature or its negation, we do not foresee any particular limitations towards
improving the offered support as described.

• A more exhaustive empirical performance evaluation. The present evaluation considered a small
graph transformation system, including a limited number of features and presence conditions.
While we have shown that including variability in transformation rules can bring performance
improvements even in this small setting, we foresee that the improvement can be more significant
when considering more rule variability and larger input models.

The abovementioned directions could be addressed by further extensions of and experimentation with
the Gryphon model checker. However, any future extensions of Gryphon are likely to retain the same
limitations regarding the supported kinds of graph transformations that we currently have. In particular,
they would be focused on graph transformation rules that create and delete edges.

To lift this limitation, a promising direction is to extend other graph-based model checking techniques
that may benefit from introducing variability as well. As a starting point, one might want to introduce
a variability-based execution mode in the GROOVE [35] model verification technique. As described in
Section 6, GROOVE explicitly represents states as graphs and transitions as applications of transforma-
tion rules. Therefore, a promising idea is to include a variability-based rule application mode to make
GROOVE variability-aware. To this end, one could use some of the concepts of dealing with variability
as presented in this paper.

Finally, while the current work is focused on addressing variability in rules, graphs could be affected
by variability as well. In particular, this is the case when modeling and analyzing a software product
line [46] using graphs, which during model checking would lead to a further dimension of combinatorial
explosion. Graph transformation of software product lines has been addressed in previous work [45, 40,
10], motivating future work on model checking as a means of validating such transformations.

References

[1] Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger & Dirk Beyer (2013): Strategies for
product-line verification: Case studies and experiments. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 482–491.

[2] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause & Gabriele Taentzer (2010): Henshin:
advanced concepts and tools for in-place EMF model transformations. In: International Conference on
Model Driven Engineering Languages and Systems, Springer, pp. 121–135.

Albers, Damasceno & Strüber 15

[3] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT Press, Cambridge, MA,
USA.

[4] Paolo Baldan, Andrea Corradini & Barbara König (2008): A framework for the verification of infinite-state
graph transformation systems. Information and Computation 206(7), pp. 869–907.

[5] Mordechai Ben-Ari (2008): Principles of the Spin Model Checker. Springer, London.

[6] Harsh Beohar, Mahsa Varshosaz & Mohammad Reza Mousavi (2016): Basic behavioral models for software
product lines: Expressiveness and testing pre-orders. Science of Computer Programming 123, pp. 42–60.

[7] Jon Haël Brenas, Rachid Echahed & Martin Strecker (2016): Ensuring Correctness of Model Transfor-
mations While Remaining Decidable. In Augusto Sampaio & Farn Wang, editors: Theoretical Aspects of
Computing – ICTAC 2016, Lecture Notes in Computer Science, Springer International Publishing, Cham,
pp. 315–332.

[8] Jon Haël Brenas, Rachid Echahed & Martin Strecker (2018): Verifying Graph Transformation Systems with
Description Logics. In Leen Lambers & Jens Weber, editors: Graph Transformation, Lecture Notes in Com-
puter Science, Springer International Publishing, Cham, pp. 155–170.

[9] Jon Haël Brenas & Arash Shaban-Nejad (2021): Proving the Correctness of Knowledge Graph Update:
A Scenario From Surveillance of Adverse Childhood Experiences. Frontiers in Big Data 4. Available at
https://www.frontiersin.org/article/10.3389/fdata.2021.660101.

[10] Marsha Chechik, Michalis Famelis, Rick Salay & Daniel Strüber (2016): Perspectives of model transforma-
tion reuse. In: International Conference on Integrated Formal Methods, Springer, pp. 28–44.

[11] Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz & Christel Baier (2018): ProFeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects of Computing 30(1), pp. 45–75.

[12] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay & Jean-Francois
Raskin (2013): Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking. IEEE Transactions on Software Engineering 39(8), pp. 1069–
1089.

[13] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens & Axel Legay (2011): Symbolic model checking
of software product lines. In: Proceedings of the 33rd International Conference on Software Engineering,
ACM, pp. 321–330.

[14] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay & Jean-François Raskin (2010):
Model checking lots of systems: efficient verification of temporal properties in software product lines. In:
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - ICSE ’10, 1, ACM
Press, p. 335.

[15] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans & Axel Legay (2012): Towards an incremental
automata-based approach for software product-line model checking. In: Proceedings of the 16th International
Software Product Line Conference - Volume 2, SPLC ’12, Association for Computing Machinery, New York,
NY, USA, pp. 74–81.

[16] Hartmut Ehrig, Karsten Ehrig, Ulrike Golas & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph
Transformation. XIV, Springer.

[17] Andre W.B. Furtado, Andre L.M. Santos, Geber L. Ramalho & Eduardo Santana de Almeida (2011): Improv-
ing Digital Game Development with Software Product Lines. IEEE Software 28(5), pp. 30–37. Conference
Name: IEEE Software.

[18] Sebastian Gabmeyer (2015): New model checking techniques for software systems modeled with graphs and
graph transformations. Ph.D. thesis.

[19] Sebastian Gabmeyer & Martina Seidl (2016): Lightweight Symbolic Verification of Graph Transformation
Systems with Off-the-Shelf Hardware Model Checkers. In Bernhard K. Aichernig & Carlo A. Furia, editors:
Tests and Proofs, 9762, Springer International Publishing, pp. 94–111.

https://www.frontiersin.org/article/10.3389/fdata.2021.660101

16 A Lightweight Approach for Model Checking Variability-Based Graph Transformations

[20] Fabio Gadducci, Alberto Lluch Lafuente & Andrea Vandin (2012): Exploiting Over- and Under-
Approximations for Infinite-State Counterpart Models. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kre-
owski & Grzegorz Rozenberg, editors: Graph Transformations, Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, pp. 51–65.

[21] Amir Hossein Ghamarian & Arend Rensink (2012): Generalised Compositionality in Graph Transformation.
In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski & Grzegorz Rozenberg, editors: Graph Transforma-
tions, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 234–248.

[22] Alexander Gruler, Martin Leucker & Kathrin Scheidemann (2008): Modeling and Model Checking Software
Product Lines. In Gilles Barthe & Frank S. de Boer, editors: Formal Methods for Open Object-Based
Distributed Systems: 10th IFIP WG 6.1 International Conference, FMOODS 2008, Oslo, Norway, June 4-6,
2008 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 113–131.

[23] Lars Grunske, Leif Geiger, Albert Zündorf, Niels Van Eetvelde, Pieter Van Gorp & Dániel Varró (2005):
Using Graph Transformation for Practical Model-Driven Software Engineering. In Sami Beydeda, Matthias
Book & Volker Gruhn, editors: Model-Driven Software Development, Springer Berlin Heidelberg, pp. 91–
117.

[24] Matthias Güdemann (2022): mgudemann/iimc. Available at https://github.com/mgudemann/iimc.

[25] Reiko Heckel (1998): Compositional verification of reactive systems specified by graph transformation. In
Egidio Astesiano, editor: Fundamental Approaches to Software Engineering, Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg, pp. 138–153.

[26] Reiko Heckel & Gabriele Taentzer (2020): Graph Transformation for Software Engineers: With Applications
to Model-Based Development and Domain-Specific Language Engineering. Springer International Publish-
ing, Cham.

[27] Tobias Isenberg, Dominik Steenken & Heike Wehrheim (2013): Bounded Model Checking of Graph Trans-
formation Systems via SMT Solving. In Dirk Beyer & Michele Boreale, editors: Formal Techniques for
Distributed Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 178–192.

[28] Shmuel Katz (2006): Aspect categories and classes of temporal properties. In: Transactions on Aspect-
Oriented Software Development I, Springer-Verlag, Berlin, Heidelberg, pp. 106–134.

[29] Tomoji Kishi & Natsuko Noda (2006): Formal verification and software product lines. Communications of
the ACM 49(12), pp. 73–77.

[30] Kodkod (2017): Kodkod: About. Available at https://emina.github.io/kodkod/.

[31] Christian Krause (2021): Henshin | The Eclipse Foundation. Available at https://www.eclipse.org/
henshin/.

[32] Sonja Maier & Daniel Volk (2008): Facilitating language-oriented game development by the help of language
workbenches. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Future Play
’08, Association for Computing Machinery, New York, NY, USA, pp. 224–227.

[33] Maria Maximova, Holger Giese & Christian Krause (2018): Probabilistic timed graph transformation sys-
tems. Journal of Logical and Algebraic Methods in Programming 101, pp. 110–131.

[34] Maria Maximova, Sven Schneider & Holger Giese (2021): Compositional Analysis of Probabilistic Timed
Graph Transformation Systems. In Esther Guerra & Mariëlle Stoelinga, editors: Fundamental Approaches
to Software Engineering, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp.
196–217.

[35] Arend Rensink (2004): The GROOVE Simulator: A Tool for State Space Generation. In John L. Pfaltz,
Manfred Nagl & Boris Böhlen, editors: Applications of Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 479–485.

[36] Arend Rensink, Ákos Schmidt & Dániel Varró (2004): Model Checking Graph Transformations: A Compari-
son of Two Approaches. In Hartmut Ehrig, Gregor Engels, Francesco Parisi-Presicce & Grzegorz Rozenberg,
editors: Graph Transformations, 3256, Springer Berlin Heidelberg, pp. 226–241.

https://github.com/mgudemann/iimc
https://emina.github.io/kodkod/
https://www.eclipse.org/henshin/
https://www.eclipse.org/henshin/

Albers, Damasceno & Strüber 17

[37] Ákos Schmidt & Dániel Varró (2003): CheckVML: A Tool for Model Checking Visual Modeling Languages.
In Perdita Stevens, Jon Whittle & Grady Booch, editors: UML 2003 - The Unified Modeling Language.
Modeling Languages and Applications, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
pp. 92–95.

[38] Sven Schneider, Johannes Dyck & Holger Giese (2020): Formal Verification of Invariants for Attributed
Graph Transformation Systems Based on Nested Attributed Graph Conditions. In Fabio Gadducci & Timo
Kehrer, editors: Graph Transformation, Lecture Notes in Computer Science, Springer International Publish-
ing, Cham, pp. 257–275.

[39] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer, Manuel Ohrndorf &
Matthias Tichy (2017): Henshin: A usability-focused framework for EMF model transformation develop-
ment. In: International Conference on Graph Transformation, Springer, pp. 196–208.

[40] Daniel Strüber, Sven Peldszus & Jan Jürjens (2018): Taming Multi-Variability of Software Product Line
Transformations. In: FASE, pp. 337–355.

[41] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer & Jennifer Plöger (2018):
Variability-based model transformation: formal foundation and application. Formal Aspects of Computing
30(1), pp. 133–162.

[42] Daniel Strüber & Stefan Schulz (2016): A tool environment for managing families of model transformation
rules. In: International Conference on Graph Transformation, Springer, pp. 89–101.

[43] Daniel Strüber, Julia Rubin, Marsha Chechik & Gabriele Taentzer (2015): A Variability-Based Approach to
Reusable and Efficient Model Transformations. In Alexander Egyed & Ina Schaefer, editors: Fundamental
Approaches to Software Engineering, 9033, Springer Berlin Heidelberg, pp. 283–298.

[44] Eugene Syriani & Hans Vangheluwe (2008): Programmed Graph Rewriting with Time for Simulation-Based
Design. In Antonio Vallecillo, Jeff Gray & Alfonso Pierantonio, editors: Theory and Practice of Model
Transformations, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 91–106.

[45] Gabriele Taentzer, Rick Salay, Daniel Strüber & Marsha Chechik (2017): Transformations of software prod-
uct lines: A generalizing framework based on category theory. In: 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems (MODELS), IEEE, pp. 101–111.

[46] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer & Gunter Saake (2014): A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47(1), pp. 6:1–6:45.

[47] Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thüm, Tobias Runge, Mohammad Reza Mousavi & Ina
Schaefer (2018): A Classification of Product Sampling for Software Product Lines. In: Proceedings of
the 22nd International Systems and Software Product Line Conference - Volume 1, SPLC ’18, Association
for Computing Machinery, New York, NY, USA, pp. 1–13.

[48] Meng Zhu & Alf Inge Wang (2019): Model-driven Game Development: A Literature Review. ACM Com-
puting Surveys 52(6), pp. 123:1–123:32.

	Introduction
	Preliminaries
	Motivating Example
	Variability Encoding
	Evaluation
	Related Work
	Conclusion
	Limitations and Future Work

