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Abstract—In search-based software engineering (SBSE), the
choice of search operators can significantly impact the quality
of the obtained solutions and the efficiency of the search.
Recent work in the context of combining SBSE with model-
driven engineering has investigated the idea of automatically
generating smart search operators for the case at hand. While
showing improvements, this previous work focused on single-
objective optimization, a restriction that prohibits a broader
use for many SBSE scenarios. Furthermore, since it did not
allow users to customize the generation, it could miss out on
useful domain knowledge that may further improve the quality
of the generated operators. To address these issues, we propose
a customizable framework for generating mutation operators
for multi-objective problems. It generates mutation operators in
the form of model transformations that can modify solutions
represented as instances of the given problem meta-model. To
this end, we extend an existing framework to support multi-
objective problems as well as customization based on domain
knowledge, including the capability to specify manual "baseline"
operators that are refined during the operator generation. Our
evaluation based on the Next Release Problem shows that the
automated generation of mutation operators and user-provided
domain knowledge can improve the performance of the search
without sacrificing the overall result quality.

Index Terms—Model-Driven Engineering, Search-Based Soft-
ware Engineering, Multi-Objective Optimization

I. INTRODUCTION

Search-based software engineering (SBSE, [1]) seeks to
solve software engineering problems using meta-heuristic
techniques. One of the main classes of used techniques are
genetic algorithms (GAs, [2]), which mimic the biological
process of evolution. GAs improve an initial population of
candidate solutions using search operators favoring reproduc-
tion of good over bad solutions. A SBSE solution to a given
problem has three ingredients: (i) a problem encoding, (ii) a set
of fitness functions to optimize, (3) a set of search operators,
including mutation, crossover, and selection operators.

A present research line is on model-driven optimization
(MDO, [3]), i.e., using model-driven techniques to bridge
the abstraction gap between declarative specifications of op-
timization problems and low-level SBSE implementations. A
key benefit is that developers can reuse available abstractions
(models in the sense of MDE), instead of encoding candidate
solutions as bit or integer vectors. This also allows developers
to specify and experiment with genetic operators, such as mu-
tation and crossover, more directly, as model transformations.

Developers of SBSE solutions face a considerable design
space of search operators, ranging from naive, generic muta-
tions (e.g., flipping a bit of a vector encoding [4]) to smart,
problem-tailored operators (e.g., applying constraint solving
within a mutation step to improve the solution [5], ensuring
soundness by generating constraint-preserving mutation oper-
ators [6]). Without automated support, the design of search
operators entirely relies on the intuition of the developer,
which, could lead to plausible, yet inefficient solutions.

For example, consider the Class Responsibility Assignment
problem (CRA, [7]), a critical benchmark in the current
research line on MDO. CRA addresses the task of creating an
optimal class design for a given set of methods and attributes.
Our previous work [8] contributed an automated technique for
generating smart mutation operators that outperformed nine
previous solutions to CRA [9], which used manually crafted
operators. The automatically generated operators performed a
certain change that is likely to produce improved solutions—
moving methods to classes that already contain a dependent
method or attribute, thus improving coherence—, an idea that
was not explored in any of the manually crafted solutions.

That previous automated technique, named FitnessStudio
[8], produces efficient problem-tailored mutation operators
based on a framework of two nested genetic algorithms: An
upper-tier algorithm “tunes” the mutation operator of a lower-
tier algorithm, where the latter is a conventional optimization
run on an example problem instance. However, FitnessStudio
has only been validated on CRA, a comparatively simple
optimization scenario. We observe two main limitations that
prohibit a wider application of this approach: (i.) Lack of sup-
port for multi-objective optimization. Whereas FitnessStudio
is geared towards single-objective problems, many software
engineering problems are indeed multi-objective problems
that cannot be reasonably addressed with a single-objective
approach, including release planning [10], software product
line testing [11], model transformation recovery [12], model
merging [13], and design space exploration [14]. Moreover,
even for single-objective problems, multi-objective optimiza-
tion can be used to improve the performance of the search (via
helper objectives [15]), which is not possible in approaches
that only support a single fitness function. (ii.) Lack of support
for user-provided domain knowledge. Aiming to overcome the
limitations of manual operator definition, FitnessStudio relied



on an entirely automated generation process. Removing human
intuition from the process lead to improved results in the CRA
case. However, it remains open whether more complicated,
multi-objective problems would benefit from user input that
allows to draw from available domain knowledge.

In this paper, we present a technique for automatically
generating efficient mutation operators for multi-objective
search problems, in the context of model-driven optimization.
We build on the FitnessStudio technique of nesting genetic
algorithms in a two-tier framework, which we extend in two
main directions: (i.) To support multi-objective optimization
problems, we provide a new component for the evaluation
of problem-specific mutation operators in the upper tier. This
makes our technique applicable to the vast array of available
multi-objective software engineering problems. (ii.) To support
user-provided domain knowledge, we provide two modifica-
tions: First, the user can provide an initial mutation operator as
input, which is then further tuned by the framework. Second,
the user can fine-tune the upper tier using a configuration.

We evaluate our technique on the next release problem
(NRP, [10]). NRP is a practically relevant problem of answer-
ing the following question: What is the optimal subset of tasks
to include in the next release of a company’s product, to min-
imize development cost and maximize customer satisfaction?
As an NP-hard multi-objective optimization problem that, for
large scale instances cannot be solved using exact optimization
techniques [16], NRP has been used for evaluations of previous
work [17] and is relevant for us as well.

The contributions of this paper are as follows:
• a technique for generating efficient mutation opera-

tors, based on a two-tier framework, supporting multi-
objective problems and user-provided domain knowledge.

• an (from-scratch) implementation of this technique, based
on the JMetal multi-objective optimization framework.

• an evaluation of this technique in the NRP case, in which
we find improved performance when compared to an
exclusively manually defined technique.

• a replication package containing all implementation and
evaluation artifacts developed in the course of this work.

II. BACKGROUND

We now introduce the necessary background. Since our
work relies on model-driven engineering (MDE, [18]), specif-
ically on model transformations, we introduce relevant back-
ground on MDE in an optimization context, before presenting
the FitnessStudio technique [8], on which our new contribution
builds. As an illustrative example, we consider the next release
problem, which also forms the basis for our evaluation.
The next release problem. Any company developing and
maintaining software products sold to a range of diverse
customers faces the next release problem (NRP, [10]). The
NRP is about determining what should be included in the next
release of a product. The company is faced with customer
demands for a wide range of software enhancements where
some enhancements will require (one or more) prerequisite
enhancements. Besides, some customers are more valuable to

Fig. 1: Metamodel of the NRP case.

the company than others so that the requirements of favoured
customers will be viewed as having more importance than
those of less favoured customers. At the same time, the
different requirements will take widely differing amounts of
time and effort to meet. The challenge for the company is
to select a set of requirements that is deliverable within their
own budget and which meets the demands of their (important)
customers, a business-critical decision-making task.

Previous work found that MDE solutions can function as a
direct problem encoding for NRP [17], [19]. Figure 1 shows
an available metamodel for the problem (from [19]). A model
instance consists of a number of solutions where a solution
contains a subset of the availableArtifacts called the se-
lectedArtifacts. A software artifact has a cost, contributesTo a
RequirementRealisation. An artifact may require other artifacts
(i.e. has dependencies). A requirement realisation dependsOn
one or more artifacts and can realise a requirement that has
one or more valuations assignedBy a customer.

The NRP has two objectives. Given above metamodel, the
first is to minimize the total cost for the selected artifacts in a
solution. The second is to maximize customer satisfaction by
realising requirements keeping in mind the value assigned to
those requirements by customers and the importance of those
customers. Cost and satisfaction are defined as follows:

Cost =
∑

sa∈SA′ cost(sa)

Satisfaction =
∑

c∈C importance(c) · satisfaction(c)

Here, SA’ is the set of selectedArtifacts, cost(sa) is the cost
for artifact sa, C is the set of customers, importance(c) is the
importance of customer c and satisfaction(c) is specified as:

satisfaction(c) =
∑

v∈MDV (c) value(v)·fulfillment(requirement(v))∑
v∈MDV (c) value(v)

MDV(c) is the set of all maximal valuations of direct
requirements for customer c. Direct requirements are those
which do not depend on other requirements. value(v) is the
value of valuation v and fulfillment(requirement(v)) calculates
the highest degree to which the requirement of valuation v is



fulfilled by either 1) direct realisations or 2) a combination
of dependency requirements. A requirement can be realised
directly in one or more ways depending on the available
realisations. A requirementRealisation is fulfilled if all soft-
wareArtifacts the realisation depends on and all their depen-
dencies are included in the solution. If multiple realisations
are fulfilled, the one with the highest percentage is chosen.
A requirement can also be fulfilled by a combination of other
requirements. The level of fulfillment is then determined by the
weighted sum of the level of fulfillment of those dependencies.

For example, consider a Requirement A that depends on two
Requirements B and C. The valuations connecting A to B and
C have the values v(B)=2, v(C)=4. The level of fulfillments are
fulfillment(B)=0.8, fulfillment(C)=0.5. The level of fulfillment
for A then is fulfillment(A) = (0.8 ·2+0.5 ·4)/6 = 0.6. In
case there is a direct realisation for A with a percentage of 0.8
the overall level of fulfillment will be max(0.6, 0.8) = 0.8.

If all availableArtifacts are selected, the cost of the release
and the customer satisfaction are maximal. The goal is to find
a good trade-off between maximizing customer satisfaction
while minimizing the cost of all selected software artifacts.

Pareto-optimality. In multi-objective optimization problems
such as NRP, there is usually a trade off between several
different “best” solutions. One considers a set of solutions that
only contains solutions that are not dominated by any other
solution. A solution dominates another solution if performs
better regarding at least one objective, while not performing
worse regarding any other. A solution is Pareto optimal if it
is not dominated by any solution in the solution space and
can only be improved for an objective by worsening at least
one other [20]. The set of all Pareto optimal solutions is
called the Pareto optimal set. However, in practice, the so-
called best-known Pareto set is used that consists of all non-
dominated solutions that were found when searching. This is
because evaluating and comparing the entire solution space is
normally impossible. Otherwise, one could use random search
and would not need to use genetic algorithms.

To compare the quality of two Pareto fronts for the same
model, we will use the hypervolume (HV) and spread measure.
Hypervolume is a widely used volume-based quality indicator
and evaluates the optimizer outcome by simultaneously taking
into account the proximity of the points to a given reference
Pareto front, diversity, and spread [21]. In addition, we include
spread in isolation as a separate indicator. The hypervolume
measure can be similar for two Pareto fronts where the first
has a narrow spread with close proximity to the real/reference
Pareto front and the second has a large spread but is further
away from the reference Pareto front.

Model transformation. Our solution uses the transformation
language Henshin [22], [23]. Henshin is a rule-based language
based on algebraic graph transformations and the Eclipse
Modeling Framework (EMF, [24]), consisting of a tool set
with editors and an interpreter engine. Using Henshin, we
can specify rules for in-place model transformations. These
rules specify basic “match and change” patterns. Our rationale

Fig. 2: Henshin rules specifying a mutation operator

for using Henshin is threefold: first, thanks to the declarative,
graphical format of Henshin, the generated operators can be
easily inspected; second, representing mutation operators in
Henshin makes it easy to transform them systematically (via
higher-order transformation rules); third, to support a fair
performance comparison against the baseline, a solution from
the MDEOptimser framework [19], using Henshin as well.

Figure 2 shows rules from the mutation operator of the
available MDEOptimiser solution of NRP. The model elements
are represented by nodes and the links between model ele-
ments by edges. Every node and edge has one of the actions
«create», «delete», «preserve», «require» or «forbid». Rule
addSingleSa adds sa, a software artifact, to sol, a solution.
However, the action «requires» secures that a dependency of
artifact sa is included in solution sol. Adding * to this action,
«requires*», expands this rule to require that all dependencies
of artifact sa are included in solution sol. Rule removeSingleSa
removes artifact sa from solution sol. However, given the
action «forbid*», it forbids that any of the dependencies of
artifact sa are included in solution sol. We use these rules for
mutation. While it is easy to come up with rules that should
improve model quality at least in certain situations, it is hard
to determine a generally efficient set of mutation rules.
FitnessStudio. FitnessStudio [8] is a two-tier framework for
generating efficient mutation operators for SBSE problems. An
overview of this framework is given in Fig. 3 (ignoring gray
coloring for now). The lower tier uses a genetic algorithm to
optimize a set of solution candidates towards a (single) fitness
function. It requires specification of a crossover operator,
fitness function and possible problem constraints, just like
other search-based techniques. However, instead of expecting
the user to specify the mutation operators, these are generated
by the upper tier of the framework. The upper tier uses a
genetic algorithm to generate efficient mutation operators for
the lower tier. An initial set of mutation operators is optimized
so that running the lower tier of the framework using that set
of mutation operators results in the best model, assessed by
the lower tier fitness-function. The upper tier is generic: it
remains constant over different problems.

FitnessStudio used a single-objective genetic algorithm on
both tiers, which makes it inapplicable to multi-objective
problems. Besides, the original version assumed that muta-
tion operators are generated entirely automatically and from
scratch, without additional user input, which does not allow
to benefit from available domain knowledge.
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Fig. 3: The mutation operator generation technique following
a two-tier framework [8] and several new components.

III. PROPOSED TECHNIQUE

The key contribution of this work is a technique for gen-
erating efficient mutation operators that, in contrast to earlier
work it builds on, supports: (i) multi-objective optimization
problems, (ii) user-provided domain knowledge. The technique
follows the two-tier architecture of FitnessStudio, shown in
Fig. 3 and explained in detail in Sect. II. To achieves its goals,
it includes several new or significantly altered components,
which we now discuss in detail.

A. Supporting multi-objective optimization problems

To support multi-objective problems, our technique needs
to allow an arbitrary number of lower-tier fitness functions,
instead of just one, as in single-objective problems. This
raises the question of how the fitness of a generated mutation
operator can be evaluated in the upper tier. The challenge is
that the lower tier produces a Pareto front of solutions, instead
of a single solution whose value can be used for easily pinning
down the fitness of its mutation operator.

A tempting solution is to turn the upper-tier algorithm into
a multi-objective one as well. To this end, one could represent
each of the lower-tier objective functions by a corresponding
upper-tier one. Values for the upper-tier objective functions to
assess a concrete solution (lower-tier mutation operator) could
be obtained from the training execution of the lower-tier algo-
rithm. The drawback of this solution is that it will generally
produce a pareto front of lower-tier mutation operators with no
obvious guidance of how to select the single most appropriate
solution among them.

Instead, in our solution, we strive to obtain a single best-
performing mutation operator. To this end, we need a single
value for comparison of mutation operators. We obtain this
value by replacing the original upper-tier fitness function with
one that computes the hypervolume (see Sect. II) of the

solutions produced in the training execution of the lower tier.
The hypervolume is computed relative to a reference Pareto
front that we obtain by executing the lower tier with a great
number of evaluations and a large population.

B. Supporting user-provided domain knowledge

Our support for user-provided domain knowledge is
twofold: First, we allow the user to specify a part of the
generated mutation operator manually. Second, we provide a
means for configuring the upper-tier algorithm.
User-specified rule set. Like any program generation task,
the fully automated generation of mutation operators from
scratch is a hard problem. While FitnessStudio showed that
full automation can lead to efficient solutions for a small-scale
problem (CRA, comprising four concrete meta-classes), this
might not necessary be the case for much more complicated
problems, such as NRP. In our technique, we explore the
idea that more efficient mutation operators could be obtained
by having a user-specified fixed operator, which is further
improved by combining it with automatically generated rules.
This way, we strive for a "best of both worlds" solution of
having a useful, but not necessarily optimal manually crafted
mutation operator which is continuously improved by our
technique.

if (Math.random() > 0.5)
mutateWithFixedRules(graph);

else
mutateWithGenRules(graph);

Listing 1: fixedXORgen: Combining generated with user-
specified fixed rules

This rationale leads to the lower-tier mutation operator de-
fined in Listing 1. In each iteration of the lower-tier algorithm,
one rule set is randomly selected with equal chance, either
the fixed or our generated ruleset. This technique leads to a
configuration option called fixedXORgen, which we will
compare against fixed: a configuration option that only uses
the available mutation operator.
Configuration of upper-tier algorithm. In its upper-
tier algorithm, FitnessStudio applies all higher-order mu-
tation rules with a fixed chance. However, for different
cases such as NRP, not every higher-order mutation rule is
equally useful. First, no node should be added or deleted
from the domain model. Subsequently, the mutation rule
createCrOrDelNodeWithContainmentEdge can best be
given no weight. Second, a rule that does not create or delete
an edge between Solution and Software Artifact will not
change the fitness score. Testing showed that increasing the
weight of the mutation rule createCrOrDelEdge improved
performance. To this end, we introduced a means to configure
the upper-tier algorithm by assigning a weight to each higher-
order mutation rule.

C. Implementation

While our framework follows the same overall structure
as previous work [8], we implemented it from scratch, since



the support for multiple objectives is a significant design
decision that affects the entire implementation architecture. We
implemented the framework based on the JMetal framework
[25], which allows choosing between several different multi-
objective genetic algorithms for the lower tier (e.g., NSGA-
II [26], which has been widely used in other search-based
software engineering studies and which we use as well). In the
upper tier of our technique, we use a single-objective genetic
algorithm. The framework, implemented in Java, is available
as part of our replication package [27].

IV. EVALUATION

We evaluated our technique on the next release problem
(NRP), a challenging and practical problem described in detail
in Sect. II. We instantiated our framework for NRP, described
in Sect. III-B, and sought to answer two research questions:

• RQ1: How does the mutation operator generated by our
framework impact performance, compared to a manually
specified operator?

• RQ2: To which extent does the customization with user-
provided domain knowledge impact the performance?

RQ1 addresses our framework’s overall performance, mea-
sured in terms of the quality of the obtained solutions as well
as execution time. RQ2 addresses the effect of one of our
two contributions in isolation. To this end, we applied it to a
single-objective version of our considered NRP case, so that
obtained effect could be attributed to the customization alone.

A. Setup.

Applying our technique to a specific problem requires to
provide the required input for the lower-tier components,
as shown in Fig. 3 (whereas the upper-tier components are
fixed). For the NRP case, we reused the crossover, fitness,
and constraint implementations from the available MDEOpti-
miser implementation [19], whereas the mutation generator is
generated by our approach. Details about parameter settings
are provided in the Appendix at [27].

In our evaluation we use five input models (a.k.a. problem
instances) of varying characteristics, as shown in Table I. Our
first two input models, called A and B, were obtained from
the MDEOptimiser project [19] and have been considered
in earlier work on a performance comparison for the NRP
case [17]. To obtain additional, larger input models, we used
an available model generator provided by MDEOptimiser,
NRPModelGenerator, to generate three additional models C-E.

The baseline for our performance comparisons is the avail-
able handcrafted mutation operator for the NRP case [19],
which was found useful in an earlier performance comparison
[17]. We also considered FitnessStudio as a potential baseline
(encoding the two objectives of NRP into a single objective),
but exploratory experiments showed that the resulting solutions

TABLE I: Input models

Input models A B C D E
Customers 5 25 50 75 100

Requirements 25 50 75 100 120
Artifacts 63 203 319 425 602

were worse than those produced by the handcrafted mutation
operator—hence, we excluded FitnessStudio from the compar-
ison and the presentation of results in this paper.

In exploratory experiments, we experienced that there is no
single best way of performing initialization for our scenario,
that is, determining the initial assignment of artifacts to
solutions. Therefore, we considered three basic initialization
strategies: empty solutions contain no software artifacts, com-
plete solutions contain all artifacts and for random solutions,
each artifact has a 50% chance to be included in the solution.
In addition to these strategies, we also explored a combination
of these strategies—rand+x, in which solutions consist of
one empty, one complete solution and for the remainder
of random solutions—, as well as one additional strategy:
extreme solutions with path relinking (EPR, [28]). For both
of our RQs, we report the best-performing of these strategies.

Our experiments where performed on a Windows 10 system
(Intel Core i7-8850H, 2.6 GHz; 32 GB of RAM, Java 1.8 with
2 GB maximum memory size). All models used and output
generated for our experiments are available at [27].

We further made the following detailed design decisions.

RQ1. We use standard evaluation metrics for our considered
multi-objective problem: for result quality, the mean hypervol-
ume (in short, HV; lower is better) and the mean spread (lower
is better). Both metrics were introduced in Sect. II and are
widely used in NRP and comparable problems. Hypervolume
is calculated relative to an available reference pareto front, in
our case created using lower-tier execution with the available
baseline operator and rand+x as initialization method, using a
population size of 200 and a maximum of 150K evaluations.
For performance, we consider the execution time for a fixed
number of runs. For all measurements, we report standard
deviations obtained from the multiple experiment runs. Stan-
dard deviations allow to express the variability over multiple
runs—a small standard deviation is desirable. We repeated the
experiment thirty times, using a population size of forty and
a maximum of 5K evaluations.

We performed the operator generation for each initialization
strategy separately, providing details in the Appendix at [27].
The generated rules contained several recurring patterns. A
prominent one is the creation or deletion of multiple se-
lectedArtifacts edges between a solution and two software
artifacts. This idea was not explored in the handcrafted op-
erator, which focused on creating or deleting only one edge
at one time—compare Fig. 2. The benefit of such a rule
in the resulting operator is that it allows to make larger
"steps" in the search space, potentially improving performance.
Creating and deleting one selectedArtifacts edge at one time
is a recurring pattern as well, with different rules specifying
a varying amount of context (preserve elements of rules).

RQ2. The next release problem has two objectives: maximiz-
ing customer satisfaction and minimizing cost. For RQ2, we
want to study the effect of our customization (one of the two
main contributions of our work) in isolation and hence, needed
a way to “factor out” the effect of the other main contribu-



(a) empty and complete (b) random and rand+x

Fig. 4: RQ1: Model B, Pareto fronts of 15-th best run (empty,
complete, random, rand+X initialization); mutation operators
from baseline (fixed) vs. our technique (fixedXORgen).

tion, that is, natively supporting multi-objective problems. We
specify the NRP as a single-objective optimization problem,
combining the two objectives as follows (with max_sat and
max_cost representing customer satisfaction and artifact cost
if all software artifacts are selected, and sat(s) and cost(s)
as the satisfaction and cost in candidate solution s):

Fit(s) = sat(s)
max_sat −

cost(s)
max_cost

We performed the operator generation and the experiments
for two selected initialization strategies, providing justification
and details in [27]. Similarly to the rules generated for the
multi-objective version in RQ1, those generated for RQ2
showed some recurring patterns: specifically, the deletion of
two selectedArtifacts edges at the same time.

We applied the genetic algorithm together with the top-
scoring generated mutation operator to models A-E. To study
result variability, we repeated the experiment thirty times,
using a population size of forty and 120 iterations.

B. Results for RQ1: Overall performance

Result quality. Table II gives an overview of our results. Using
random initialization, for all models except for the smallest
model, A, the mutation operator from our technique results
in improved result quality. Using rand+x initialization (Table
II, right), the result quality when using the combination of
the generated and available mutation operator is improved for
models A, C and D, is very similar for model B and is worse
for model E. Potentially, mutation operators generated for an
initial population containing both extremes cannot be expected
to perform similarly for different models. The picture for the
additional initialization strategies (not shown) is similar: our
technique in most cases produces somewhat better solutions
than the baseline, but not consistently so for all models. In all
cases, the observed standard deviations small, showing a good
ability to produce consistent solutions over multiple runs.

For a more detailed analysis, we consider the results for
model B, as illustrated in Fig. 4 (and in the Appendix available
at [27]), combining the MDEOptimiser mutation operator with
our generated mutation operator results for four out of five
initialization methods in an improved hypervolume and in

four out of five cases in an improved spread. The extremes
initialization method results in a slightly worse hypervolume
and the rand+x initialization method in a marginally worse
spread. However, in both cases, the other quality measure
is slightly improved. So, the result quality for model B is
improved in three out of five cases and results are similar
for the other two. From Fig. 4b, it seems like our generated
mutation operator mostly improves the quality for solution sets
having a smaller artifact cost.

Execution time. The execution time decreased significantly for
all tested models and initialization methods when combining
our generated mutation operators with the one from MDEOp-
timiser. This observation can be explained by the higher com-
plexity of the manually defined baseline operator, which relies
on complicated control flow, leading to longer execution times.
In the combined operator, using our generated rules, which
are generally simple and therefore, easy to execute, improves
the execution time. Similar to the quality measurements, we
observe small standard deviations for both the baseline and our
technique, showing a good ability to have similar execution
times over multiple runs.

Summary of results (RQ1). The results indicate that our tech-
nique is able to support the generation of mutation operators
for multi-objective problems [8]—leading to a benefit over
previous work, which focused on single-objective problems.
The generated operators can be used to improve the perfor-
mance of the search (in terms of execution time) relative
to hand-crafted mutation operators, without sacrificing result
quality (in terms of hypervolume and spread).

C. Results for RQ2: Usefulness of customization

Result quality. Table III shows RQ2’s results. For complete
initialization, combining our generated mutation operator with
the MDEOptimiser mutation operator improved the result
quality for all five models. For random initialization, using
the combined mutation operator improved the result quality
for the larger three models significantly. For model A, result
quality was slightly better using the combination of the two.
For model B quality was slightly better using only the baseline
mutation operator. It seems that using our technique quality
improves especially for larger models or fewer iterations.

Runtime performance. Using random initialization, the me-
dian run time significantly decreased in all cases when using
our technique of combining the two mutation operators. Us-
ing complete initialization, our technique decreased run time
for models A and C while the execution time significantly
increased for the other three models. The generated mutation
operator for random initialization seems to be more efficient
than the one for complete initialization.

We suspect that the performance of generated mutation
operators can be guided by limiting the difference between
the execution time of the first iteration and the timeout for the
upper tier. This is because a long run time for execution of an
iteration of the upper tier of the framework seems to indicate
a longer run time for the resulting mutation operator.



TABLE II: RQ1: random and rand+ x results (mean, (stdev)), times denoted as mm:ss:xxx.
Results random rand+ x
Input Baseline (fixed) Contribution (fixedXORgen) Baseline (fixed) Contribution (fixedXORgen)
model HV Spread Runtime HV Spread Runtime HV Spread Runtime HV Spread Runtime

A 0.0911
(0.0198)

0.5795
(0.0824)

00:08.817
(00:00.335)

0.1293
(0.0425)

0.6642
(0.059)

00:07.284
(00:00.486)

0.103
(0.0134)

0.5079
(0.0559)

00:08.986
(00:00.363)

0.0704
(0.0116)

0.501
(0.0544)

00:06.342
(00:00.282)

B 0.267
(0.0267)

0.7146
(0.0737)

00:28.057
(00:00.399)

0.178
(0.0255)

0.5283
(0.0488)

00:23.433
(00:02.271)

0.222
(0.0193)

0.4697
(0.04)

00:29.022
(00:00.339)

0.2102
(0.0179)

0.4708
(0.0428)

00:20.806
(00:00.401)

C 0.3512
(0.024)

0.8471
(0.0479)

00:45.160
(00:00.830)

0.2622
(0.0249)

0.7381
(0.0584)

00:33.351
(00:01.130)

0.2629
(0.0163)

0.4205
(0.0341)

00:45.694
(00:00.529)

0.2304
(0.021)

0.4297
(0.0387)

00:31.953
(00:00.505)

D 0.3985
(0.0209)

0.8714
(0.0494)

01:01.851
(00:01.004)

0.3351
(0.0257)

0.844
(0.045)

00:46.192
(00:01.139)

0.2415
(0.0131)

0.4439
(0.0278)

01:03.647
(00:01.143)

0.2283
(0.0126)

0.4314
(0.037)

00:43.879
(00:00.487)

E 0.4778
(0.0207)

0.9129
(0.0303)

01:34.769
(00:01.455)

0.4672
(0.0226)

0.9028
(0.0324)

01:08.612
(00:01.396)

0.3073
(0.0151)

0.3698
(0.047)

01:34.197
(00:01.501)

0.3277
(0.0178)

0.3819
(0.0574)

01:06.508
(00:01.770)

TABLE III: RQ2: Results using complete and random initialization, times denoted as mm:ss:x.
Init. complete initialization random initialization

Results Baseline (fixed) Contribution (fixedXORgen) Baseline (fixed) Contribution (fixedXORgen)

Input NRP Time NRP Time NRP Time NRP Time
model best median median best median median best median median best median median

A 0.457 0.446 00:10.0 0.457 0.457 00:08.2 0.454 0.439 00:11.4 0.461 0.440 00:08.6
B 0.526 0.504 00:35.3 0.582 0.556 00:40.7 0.589 0.554 00:38.4 0.602 0.540 00:30.0
C 0.379 0.357 00:47.8 0.459 0.435 00:43.3 0.508 0.461 00:59.2 0.539 0.491 00:46.4
D 0.314 0.276 01:04.3 0.427 0.405 01:35.8 0.434 0.403 01:20.9 0.473 0.443 01:06.8
E 0.218 0.207 01:48.6 0.357 0.336 02:25.1 0.272 0.226 02:15.0 0.330 0.290 01:39.1

Summary of results (RQ2). We find that even for a single-
objective version of the NRP problem, supporting user-
provided domain knowledge (in the sense of a manually
specified initial operator) can lead to an improvement: The
combined operator based on our generated rules and the
manually specified operator produces better solutions than
considering only the manually specified one, sometimes while
at the same time improving the execution time.

D. Limitations and Threats to Validity.

The main limitation of our technique is that generating
the mutation operator using the upper tier takes time and is
required before execution of the lower tier that actually finds
solutions. The impact of this overhead depends on how often
the lower tier is ran using the generated mutation operator.

External validity is threatened by the limited scope of
our experiments: one benchmark case with five models of
varying size, including some of significant size. Regarding
conclusion validity, our analysis is restricted to descriptive
statistics instead of a more rigorous inferential methodology.
This treatment is justified by the nature of our data, especially
by the observed standard deviations, which are generally much
smaller than the differences of means—indicating a clear
difference between the treatments. Construct validity is threat-
ened because we only consider two quality indicators (albeit
particularly common ones), whereas other quality indicators
could lead to different results [29].

V. RELATED WORK

Hyper-heuristics. Hyper-heuristics can be described as “off-
the-peg” methods that, given a particular problem class and
a set of low-level heuristics components, can automatically
produce an adequate combination of these components to
effectively solve a problem instance [30]. Hyper-heuristics
are categorized by their objective (selection or generation of
heuristics) and source of feedback (online or offline learning)
[31]. Online hyper-heuristics learn while solving a problem

instance, while offline approaches gather knowledge from a
training set that can hopefully generalise to unseen problem
instances. In this paper, we present an offline hyper-heuristic
to generate efficient mutation operators for multi-objective
search-based MDE optimization problems.

Automated generation of mutation operators for vector-
based encoding. Self-adaptive mutation [32] has been pro-
posed as a means to change the mutation rate of genetic
algorithms using vector-based encoding. Meta-learning has
been used to design mutation operators expressed as register
machines [33] and in genetic programming [34]. Woodward
and Swan [33] show how register machines can be used to
express two common mutation operators (i.e., one-point and
uniform mutation). Hong et al. [34] use genetic programming
to automatically generate mutation operators over a benchmark
set that can outperform existing human-designed mutation
operators. These works were focused on single-objective prob-
lems. Recently, focusing on search-based refactoring, Abid et
al. [35] show how association rule mining can seed the initial
population and derive smart change operators. Their approach
is specifically tailored to refactoring.

Automated generation of mutation operators in MDE. On
generating mutation operators for model-driven optimization,
there is a technique by Burdusel et al. [3], [36]. Burdusel
et al. have a different goal than us, as they aim to establish
atomicity (and not efficiency) of the generated mutation oper-
ators. Atomic mutation rules, such as the manually specified
rules for the NRP case considered in our evaluation (see
Fig. 2), encapsulate atomic changes to a solution. Hence, this
technique does not produce operators such as those observed
in our evaluation (e.g., assigning several artifacts at the same
time), since they are not atomic. Addressing a broader context
than optimization, Gómez-Abajo et al. [37] present Wodel, a
domain-specific language, and Eclipse plugin to develop and
analyse domain-independent model-based mutation operators.
While Wodel can aid in the creation of mutation operators,



it still requires the user to define the mutation rules [37].
Also related to the generation of mutation operators, there are
research studies on analysing generated mutation operators.
Kosiol et al. [38] present an approach to check whether
mutation rules improve solution consistency or at least do not
introduce new violations.

VI. CONCLUSIONS AND FUTURE WORK

We present an approach for automatically generating ef-
ficient mutation operators for multi-objective optimization
problems. We extend the FitnessStudio technique and its
two-tier framework with a novel component for evaluating
problem-specific mutation operators for multi-objective opti-
mization problems. We provide means to users provide domain
knowledge (i.e., an initial mutation operator) and set custom
configurations to fine-tune the upper-tier’s framework. These
principles make our approach suitable to address other avail-
able multi-objective software engineering problems. Based on
our evaluation, we found evidences that our approach can
achieve an improved performance without sacrificing result
quality compared to manually-specified operators.

As future work, we foresee three directions. First, the
timeout parameter when generating mutation operators might
affect the efficiency of the generated mutation operator. Thus,
increasing the timeout further might increase efficiency of our
technique. Second, as our research showed, the used initial-
ization method can have a significant influence on results both
when generating and applying mutation operators. Then, we
believe that the initialization methods should be investigated
more deeply, especially for finding cases when our technique
should be used. Other evaluation metrics, such as CPU time
and memory usage, may be helpful in this analysis.
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