Learning by Sampling: Learning behavioral family models from software product lines

ICIS Seminar

Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, Adenilso Simao Journal paper published at the Empirical Software Engineering Journal PhD research at University of Sao Paulo and University of Leicester

Context

Analysis and modeling of SPLs

Product-based strategies

- Missing models
- Redundant analysis
- Scalability (e.g., exponential)

AGM

Context

Analysis and modeling of SPLs

Family-based strategies

- Missing family models
- Model maintenance and evolution
- Commonalities/variabilities are unknown

AGM

Context

Research Problem

How can we **leverage model learning** concepts to the task of **behavioral variability modeling?**Can we obtain models precise enough if we **sample configurations**?

FFSM Difference (FFSM Diff)

The FFSM _{Diff} can learn FFSMs from a product models by employing state-based model comparison and express product-specific behaviors with feature constraints using feature model analysis

State-based model comparison (LTS Diff

algorithm)

Comparing the Structures of Two State Machines of a Text Editor

State-based model comparison (LTS Diff

algorithm)

$$S_{Succ}^{G}(a,b) = \frac{1}{2} \frac{\sum_{(c,d,i,o) \in Succ_{a,b}} (1 + k \times S_{Succ}^{G}(c,d))}{|\sum_{r}^{out}(a) - \sum_{u}^{out}(b)| + |\sum_{r}^{out}(b) - \sum_{u}^{out}(a)| + |Succ_{a,b}|}$$

Figure: Global similarity score ⁴

Global similarity score (Outgoing and incoming transitions)

- Pairwise similarity based on surrounding matching transitions and connected state pairs.
- Attenuation ratio k gives precedence to the closest state pairs.
- Matching transitions and distinct transitions.

State-based model comparison (LTS Diff

algorithm)

$$S_{Succ}^{G}(Pa, Pa) = \frac{1}{2} \times \frac{3 + k \times [S_{Succ}^{G}(St, St) + S_{Succ}^{G}(Bo, Po) + S_{Succ}^{G}(Pa, Pa)]}{0 + 0 + 3} = 0.58$$

Figure: Two examples of product FSMs and their similarity scores

State-based model comparison (LTS DIFF

	Pair	(St,St)	(St,Po)	(St,Pa)	(Bo,St)	(Bo,Po)	(Bo,Pa)	(Pa,St)	(Pa,Po)	(Pa,Pa)	#Match
Т	(St,St)	10.0	0.0	0.0	0.0	-0.5	0.0	0.0	0.0	0.0	1
	(St,Po)	-0.5	8.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.5	2
	(St,Pa)	-0.5	0.0	8.0	0.0	-0.5	0.0	0.0	0.0	0.0	2
	(Bo,St)	0.0	0.0	0.0	9.5	0.0	0.0	0.0	0.0	0.0	1
	(Bo,Po)	0.0	0.0	0.0	0.0	7.5	0.0	0.0	0.0	-0.5	2
	(Bo,Pa)	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0
	(Pa,St)	0.0	0.0	0.0	0.0	-0.5	0.0	7.5	0.0	0.0	2
	(Pa,Po)	-0.5	0.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	1
	(Pa,Pa)	-0.5	0.0	0.0	0.0	-0.5	0.0	0.0	0.0	5.5	3

Table 1: Illustration of a system of linear equations

The FFSM _{Diff} algorithm

Figure: Two examples of product FSMs

$$pair(St, St) = 0.12$$
 $pair(St, Po) = 0.29$
 $pair(St, Pa) = 0.28$
 $pair(Bo, St) = 0.11$
 $pair(Bo, Po) = 0.31$
 $pair(Bo, Pa) = 0$
 $pair(Pa, St) = 0.29$
 $pair(Pa, Po) = 0.11$
 $pair(Pa, Po) = 0.58$

Figure: Pairwise state similarity

The FFSM _{Diff} algorithm

Figure: Fragment of the FFSM learnt from two products of the AGM SPL.

Simplified configuration – Example

$$\rho_{Bowling} = (W \land \neg S \land \neg B \land \neg N)
\rho_{Pong} = (N \land \neg S \land \neg B \land \neg W)$$

EMPIRICAL EVALUATION

Research Questions

- RQ1) Effectiveness on learning succinct family models, given the total size of the product pairs under learning
- RQ2) Size of learned family models vs. configuration similarity
- RQ3) Effectiveness in learning succinct family models, given the total size of the hand-crafted family models
- RQ4) Effectives on learning precise family models by sampling vs. exhaustive?

Subject Systems

	SPL	Featur	re model	Family model		
ID	Name	Features	Valid conf.	States	Transitions	
AGM	Arcade Game Maker	13	6	6	35	
VM	Vending Machine	9	20	14	197	
WS	Wiper System	8	8	13	112	
AEROUC5	Aero UC5	7	9	25	450	
CPTERMINAL	Card Payment	13	30	11	176	
MINEPUMP	Minepump	9	32	25	575	

Table 10 – Description of the SPLs under learning - Feature and family models

Experiment Design

Experiment Design (cont.)

ANALYSIS OF RESULTS

Analysis of Results (RQ1 and RQ3 - Size of Product

Pairs/Handcrafted)

Figure 26 – Number of transitions in the learned FFSMs and pairs of products

Analysis of Results (RQ2 - Configuration similarity)

Pearson correlation coefficient - Pairwise analysis

Figure 28 – Scatter plots for the relationship between the normalized size of the learned FFSM and configuration similarity

More precise family models

Analysis of Results (RQ4 - Learning by Sampling)

Figure 31 – Model precision by sampling criteria

Higher values of T

Analysis of Results (RQ4 - Learning by Sampling)

Analysis of Results (Software artifacts)

https://github.com/damascenodiego/learningFFSM

FINAL REMARKS

Summary

(E)

- 1. Learn fresh FFSMs from products pairs
 - Especially if there is high feature reuse (i.e., configuration similarity)
- 2. Incorporate new product behaviour into an existing FFSM
 - Family model recovery (e.g., reverse engineering, re-engineering)
- 3. Sampling lead to models as precise as those from exhaustive learning
 - Higher "T" values lead to higher coverage
 - Sampling can be helpful to family model learning

Fig. 8: Experiment design - Learning FFSMs by product sampling

Future Work Prod {1,2} Prod 2 Prod 1 Prod {1,2,n} Learning to Product model ∂ family model Product model ∂ family model Active automata 🔓 Active family OTR = (SR, ER, TR SUL Prod 01 Active family model Prod n Prod 02 learning Figure 32 – Active family model learning Incremental Source: Damasceno (2019). Configurable Queries Fingerprinting evolving Learning from Learning by systems Differences Sampling

THANK YOU

