Learning by Sampling:
Learning behavioral family
models from software product
lines

Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, Adenilso Simao e
Journal paper published at the Empirical Software Engineering Journal
PhD research at University of Sao Paulo and University of Leicester

Acces_s t'he

é‘“@umversidade p | UNIVERSITY OF

de S3o Paulo s LEICESTER

Radboud University § %
%M,NE‘(@&

Introduction

T Configuration m

o]}
v [] []
Y [] []
Q [] []
0n
[
o=
5. Configuration &2
]
o=
—
o=
o]
(10}
o
C
10}
>
Configuration 1
Version 1 Version2 Version 3 Version n
<& Evolution over time L 3

K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.
H. Chockler, D. Kroening, L. Mariani, and N. Sharygina, Eds., Validation of Evolving Software. Cham: Springer International Publishing, 2015.
M. S. Deutsch, ‘Tutorial Series 7 Software Project Verification and Validation’, Computer, vol. 14, no. 4, pp. 54—70, Apr. 1981

laQi

Context - /o\

Analysis and modeling of SPLs

Product-based strategies

Start/1
TRUE
EX|t/0 Start/O
Pause/0 Exit/0
Start/ 1
TRUE
EX|t /1
-

Exit/0 Sta rt/0

Pause/0

Context

Analysis and modeling of SPLs

Family-based strategies

>

.

TRUE

Start[True]/1

AGM

AN\

/

/

>
BI||N

J

___A

Exit[True]/O

=

Pause[True]/0

Exit[N]/1

. J

___A

Start[True]/0
Exit[B]/0

Context

Minimally Adequate Model Learning Algorithm
Equival Q@ i (E])
TeaCher' (MAT) qulvalence uerilies - . ~
Observation Table
Model-Based Testing Ewm

(MBT) S
Yes ||l Counterexample M
AN Sm !

Formulate

Membership Queries (MQ) \/

andang

<s:ndu1 + 33say

—_—— Query Output
4 |
System Under Learning (SUL) EExiit/0 Start/0
SEINY) Exit/0

D. Angluin, ‘Learning regular sets from queries and counterexamples’, Information and Computation, vol. 75, no. 2, pp. 87-106, 1987

F. Vaandrager, ‘Model Learning, Commun. ACM, vol. 60, no. 2, pp. 86-95, Jan. 2017
C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning to reuse: Adaptive model learning for evolving systems’, in 15t Integrated Formal Methods, Bergen, Norway, 2019

Research Problem

"""""""""""""""""""" AGM /
Start/1 ("

Exit/0 Start/0

)

i : N\ Start[True]/1 £

1 1

| TRUE : /O\ >

: 1] i e

! Exit/0 Start/0 : \) ExitiN}/1 - y
P /0 Exit/0 YT

i ause XIStart/1 i ,,,/ ~,.b . . J J

: moe [| W Y 1 10 Exit[True]/0 Start[True]/0

] Exit/ 1 Pause[True]/0 Exit[B]/0

: | | /

1

1

Pause/0

How can we leverage model learning concepts to the task of behavioral variability modeling?
Can we obtain models precise enough if we sample configurations?

>PuC

23rd Systems and Software
Product Line Conference

FFSM Difference (FFSM ,-)

Product 1: (AGM & N & ~B)

Product 1 | 2: (AGM & N & -B) | (AGM & B & -N)

Exit/0 Start/0
Pause/0

"

System
calculation

Product 2: (AGM & B & -N)

Exil[B|N)/0 Start[B|N}/0

Pause[B|N)/0 Exit[E}f%

Find common states +
Feature constraints construction

4
Exit/0 Start/0

Pause/0 Exit/0 ﬁ

The FFSM ¢ can learn FESMs from a product models by employing state-based model comparison

and express product-specific behaviors with feature constraints using feature model analysis

C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning from Difference: An Automated Approach for Learning Family Models from Software Product Lines’, in 23" International Systems and Software

Product Line Conference, 2019

State-based model comparisons,,

a|gnrifhm\

edit

load

Comparing the Structures of Two State Machines of a Text Editor

N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

State-based model comparisons,,

algorithm)

1 Z(C,d,f’o) S Succa,b(l + k X SSGUCC(C3 d))
2|30 (a) = 2o (B + 1 227 (b) — 220 (a)| + | Suees p)

Figure: Global similarity score *

Ssucc(a: b) =

Global similarity score (Outgoing and incoming transitions)
@ Pairwise similarity based on surrounding matching transitions and connected state pairs.
@ Attenuation ratio k gives precedence to the closest state pairs.

e Matching transitions and distinct transitions.

N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

State-based model comparisons,,

algorithm)
G G G
SG (Pa Pa) — 1 3+ k x[55,.(5t, S5t) + Sg,..(Bo, Po) + 5¢,..(Pa, Pa)]
Succ(a, a) — 5 X 0+0+3 — 0.58
Exit/1
Start/0 Exit/1
/ Start/
Start/1 "\ Pause/1 v %
Start Bowling Pause __Starti [__Pause/l _ [
Game Game . i Start - Pong - P
= J ~ Start/t - A Game P Game j}s B ause
J o~ .) Exit/1 ')~ Start/1 | -
Exit/1 Exit /0 aus
I Pause / 1 Exit/0 Pause/0

Pause/0

Figure: Two examples of product FSMs and their similarity scores

Radboud University %i‘f 10

State-based model comparisons,,

(St,St) (St,Po) (St,Pa) (Bo,St) (Bo,Po) (Bo,Pa) (Pa,St) (Pa,Po) (Pa,Pa)

Table 1: Illustration of a system of linear equations

Radboud University s%i 11

> N
S
e

The FFSM . algorithm

Exit/1
s pair(St S = 012
Pause/t _[
Pause
< Start/1 __
)
Ext/0 Pause/0
Pause / 1
Starti1 Pause/1 ____(_
Pong
B Game %, B Pause
" Exit/1 ka—’j‘ Start/1
Pause/0
Figure: Two examples of product FSMs Figure: Pairwise state similarity

Radboud University § %

4
2

3 g

"%: ©

—-— Ty,

Legend:

[) pm——— l‘--ﬂr;d:(;me Maker[AGM] \\\ ; g;?:::w
The FFSM .. algorithm ot i
\A Start] (W&~5&-B&-N)|(N&~S&-B&=W)]/1
Start*Start Bowling*Pong
[True] Exit[(N&-S&-B&-W)]/1 (W& ~S5&~B&~N)|(N&~S&—B&-W)
\
N
EXit[(W&—S&—B&=-N)]/0
Figure: Fragment of the FFSM learnt from two products of the AGM SPL.
Simplified configuration — Example
P Bowling = (W A—=SAN-BA —IN)
PPong = (N AN—=S AN =B A=W)

PN
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in “FACS 2016.

D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of feature models 20 years later: A literature review’, Information Systems, vol. 35, no. 6, pp. 615-636, 2010

EMPIRICAL
EVALUATION

Research Questions

RQ1) Effectiveness on learning succinct family models, given the total size of
the product pairs under learning

RQ?2) Size of learned family models vs. configuration similarity

RQ3) Effectiveness in learning succinct family models, given the total size of
the hand-crafted family models

RQ4) Effectives on learning precise family models by:samplingvs:-exhaustive?

Radboud University § %

&
2
> $
Yoy

15

Subject Systems

SPL Feature model Family model

ID Name Features | Valid conf. | States | Transitions

AGM Arcade Game Maker 13 6 6 35

VM Vending Machine 9 20 14 197

WS Wiper System 8 8 13 112
AEROUCS Aero UCS 7 9 25 450
CPTERMINAL Card Payment 13 30 11 176
MINEPUMP Minepump 9 32 25 575

Table 10 — Description of the SPLs under learning - Feature and family models

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples'. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples

H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in ~FACS 2016.

https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples

Experiment Design

Product 1: (AGM & N & -B)
Start/1
TRUE N
Exit / 1

Product 1| 2: (AGM & N & -B) | (AGM & B & -N)

N WMath]

Exit/0 Start/0

Pause/0 %

Product 2; (AGM & B & -N)

System
calculation

Exil[BIN)/0 Start[B|N}/0

Pause[B|N]/0 Exit[E]ﬂ:&

Start/1
TRUE B

Find common states +

Feature constraints construction

D)=
Exit0 Start0 eature

Pause/0 Exit/0 ﬁ

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thim, et al., ‘FeaturelDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014

Experiment Design (cont)
Product { (2) FFSMpjs {

1 - wise i
(Feature-wise) -] >) Sampling
2-wise (1)
(Pair-wise)] l
[Configuration 1
configuration 2

All-valid
=

N Math]

eature

[Configurafion 4

”.l Configuration n

(Exhaustive)

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thim, et al., ‘FeaturelDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014

Partial family model FF ¢

Legend:

-Reused Artifacts
|:| Custom Artifacts

[|Generated Artifacts
—>» Automatic Step

ANALYSIS OF RESULTS

Analy5is Of RESUItS (RQ1 and RQ3 - Size of Product

Pairs/Handcrafted)

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney's A effect size

Number of transitions

35 -
30 1
25 1
20 1
15
10 1

FFSM Pair

AEROUCS

600 -

500 -

400 4

[l
il

FFSM Pair

VM

300 -
2009 - --F--H- | |-
100 -

FFSM Pair

CPTERMINAL

300 - —_—
250 - |
200 -
o) S
100

FESM Pair

Software product line

WS
160
120 ~ 1|
80 -
FFSM Pair
MINEPUMP
1000 3
750 -
500 -
250 - I
——
FFSM Pair

Figure 26 — Number of transitions in the learned FFSMs and pairs of products

An a Iys i S Of Re S u Its (RQ2 - Configuration similarity)

Pearson correlation coefficient - Pairwise analysis

AGM
10- 1.01 1.0-
0.8
0.9 0.81
0.6
%O_B- 0.6'
= R=--084,p-=2306 @
= 0.4 0.4
Eo7L. | | R=-076.p<2216 o o |[V%] g=_079,p=2907 _ e
S 0.5 0.6 0.7 0.5 0.6 0.7 0.8 0.9 0.60 065 0.70 0.75 0.80
@ AEROUCS5 CPTERMINAL MINEPUMP
S 1.0 o eee 1.01 eummme
2
5
o 08' * 08'
e oo
0.61
0.6 - e ¢ enemD ®®
° . * o ®e |yl bl oo
R = —0.55. . p® 1‘18'06. | R =_—0.52 . p < 2.23:16 ! .. .Ff = —_0.73 + p < 2.2@-16 ! I
0.60 0.62 0.64 055 060 065 070 0.75 0.55 0.60 0.65 0.70 0.75 0.80

Ratio between the size of the learnt FFSM to the total size of products pair (number of transitions)
Figure 28 — Scatter plots for the relationship between the normalized size of the learned FFSM and
configuration similarity

Kadboud University §{s:
Pearson correlation coefficient

Analysis of Results,

AGM

1.00 -

0.95 4

0.90 4

0.85 4

0.80

0.75 4 .

1wise 2wise

3wise 4wise all

Precision

AEROUCS5

1.000

0.975 A

0.950 - —

0.925 ~

0.900 - *

0.875 - ——

|

]
]
]
Ll

1wise 2wise

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney's A effect size

3wise 4wise all

\'

1.0 1

0.8 1

0.6

0.4 1

1wise

2wise 3wise 4wise all

CPTERMINAL

1.000 -

0.975 A

0.950 A1

0.925 -

0.900 A

1wise

2wise 3wise 4wise all

RQ4 - Learning by Sampling)
M WS

1.00 -
0.96 -
0.92 4
0.88 - I
1w'|'se 2w'ise 3w"|se 4w'ise a‘II
MINEPUMP
mn . B
R B L]
0.95 A —.— T T 1
L
0.90 A
0.85 -
1w'|'se 2w'ise 3w"|se 4w'ise alll

Figure 31 — Model precision by sampling criteria

Radboud University {G5¢

N
Ne s

More precise family models

Higher values of T

22

AnaIySis Of RESUItS (RQ4 - Learning by Sampling)

!

Pause[W]/1

Start/1

Save[W&&S]/1

4

Start/1 oot — Exil[W&&S]/1-
Start Game Brickles*Pong*Bowling Pause/1
Exit[N]/1 | [BIIN||W] Je_Stari 7|

Save[(B||N)&&S)/1

Pause W {0

Save|
Exlt['W”]H]
Exit(W&&!S)/1

]
Start/0
Exit[B]/0

Exit(W&&!S]/0

Exit/1

y Save[B]/O
Save|N]/
Pause Game Save Game[S]

Pause/0

Radboud University § %i
Yo

T

Save/0

Exit/0
Pause[!W]/
Pause[W]/0

23

Analysis of Results

(Software artifacts)

<> Code

& damascenodiego / learningFFSM

7) Issues 1" Pull requests {¥) Actions [[0 Security |+ Insights
¥ master = ¥ 3branches O 4tags Go to file + Code -
damasc di and damasc di EMSE journal URL added o 4733325 9 min %) 253 commits
FFSM_diff project actored based o recommendations of htt 5 months ago
docs EMZE journal URL addad & minutes ago
Experimants wizb page updated 5 months ago
O gitignore logs 2ye o

README.md

The Featured Finite State Machine Learning project (aka
FFSM_Diff)
This repository contains the open source and open data from the Featured Finite State Machine Leaming project. This

project is a result of the PhD research of Carlos Diego Nascimento Damasceno at the Universidade de Sao Paulo under
the supervision of Adenilso Simao and Mohammad Mousavi.

This repository is organized as follows:

In folder FFSM_diff, we have the Java project of the FFSM_DIff algorithm. This project can be opened using the Eclipse
IDE and JDX version 1.5,

In folder Benchmark_SPL, there is & set of SPLs that can be used as subject systems. These SPLs are available as (F)FSM
and FTS models.
In folder docs, you find the webpage of the FFSM_Diff project.

In folder experiments, you find the directories containing the open data artifacts generated from studies using the
FFSM_Diff algorithm, These sub-folders are organized based on the project structure and naming conventions from
https://doi.org/10.1007/978-3-030-32489-6_17

Currently, this project has been used in two studies:
* Learning from Difference @ SPLC2019 (Sizes ~22MB})

* Learning by Sampling @ EMSEZ2020 (Size: ~46MBE)

© Watch | 1 o osar 0 Y Fork

About

The FFSM_Diff project - An automated
approach for leaming family models
from software product lines

& damascenodiego.github.io/learningffs..

M Readmea

Releases 4

L

ming By Sampling @ EMSE (Latest)
020

Packages

Languages
—— —
® TeX 274%

® Python C.4%
Shell 12%

o

https://github.com/damascenodiego/learningFFSM

Radboud University

PN
ox‘
</mw

MiNe s

PG

3rd Systems and Software
Product Line Conference

24

https://github.com/damascenodiego/learningFFSM

FINAL REMARKS

Radboud University § %
%Mme‘?@\}

Summary 'Erk”

- Especially if there is high feature reuse (i.e., configuration similarity)

1. Learn fresh FFSMs from products pairs

2. Incorporate new product behaviour into an existing FFSM

- Family model recovery (e.g., reverse engineering, re-engineering)
3. Sampling lead to models as precise as those from exhaustive

learning

- Higher “T" values lead to higher coverage

- Sampling can be helpful to family model learning

Radboud University *j%f 26

1 - wise FFSMp; : : .
Product (2) Diff Partial family model FF
(Feature-mse)) Sampling { { LL ry_\ t

b [®o]
p R (1)
(Pair-wise)] l

eature

i) | @ —L]) L]
\ ali[®4] }
[Configuration 1
Uonnguratlon@

All-valid
=

Legend:
-Reused Artifacts
Custom Artifacts

Configuration 4

Generated Artifacts
—» Automatic Step

".l Configuration n

(Exhaustive) =

Fig. 8: Experiment design - Learning FFSMs by product sampling

C
M.
G. Shu and D. Lee, ‘Network Protocol System Fingerprinting - A Formal Approach’, in Proceedings of the IEEE INFOCOM 2006

Future Work

r—
| Active family model
I
I

learning

r— —

| Fingerprinting evolving |l -

systems

—

Learning to

™

oT,

Ey

T
S. |

‘wi

oictone!

,1

N

Incremental

N
1 N\

=— =—> Configurable |K

Queries

l

oy

Learning from
Differences

]

FFSMpiq E

A A

y IN voin

SuL SuL
Prod 02 Prod n

Figure 32 — Active family model learning

Source: Damasceno (2019).

... >
Prod 1 Prod 2 Prod {1,2,n}
T = o
Product model Product model a family model
‘!out T out * out
Active automata Active family in
SUL leaming E model leaming R
Prod 01

I
out

Prod {1,2}

s

a family model

Learning by
Sampllng

D. N. Damasceno, ‘Learning From Families: Inferring Behavioral Variability From Software Product Lines', presented at the PhD Symposium at Integrated Formal Methods, Bergen, Norway, 2019.
Al-Hajjaji, S. Krieter, T. Thim, M. Lochau, and G. Saake, ‘IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sampling’, in Proceedings of the GPCE 2016

THANK YOU

‘“iy'Universidade
W+ de Sao Paulo

QAcnPq

Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico

A FAPESP

SAO PAULO RESEARCH FOUNDATION

Radboud University § %

2,
niNe

	Slide 1
	Slide 2: Introduction
	Slide 3: Context
	Slide 4: Context
	Slide 5: Context
	Slide 6: Research Problem
	Slide 7: FFSM Difference (FFSM Diff)
	Slide 8: State-based model comparison (LTS Diff algorithm)
	Slide 9: State-based model comparison (LTS Diff algorithm)
	Slide 10: State-based model comparison (LTS Diff algorithm)
	Slide 11: State-based model comparison (LTS Diff algorithm)
	Slide 12: The FFSM Diff algorithm
	Slide 13: The FFSM Diff algorithm
	Slide 14
	Slide 15: Research Questions
	Slide 16: Subject Systems
	Slide 17: Experiment Design
	Slide 18: Experiment Design (cont.)
	Slide 19
	Slide 20: Analysis of Results (RQ1 and RQ3 – Size of Product Pairs/Handcrafted)
	Slide 21: Analysis of Results (RQ2 – Configuration similarity)
	Slide 22: Analysis of Results (RQ4 – Learning by Sampling)
	Slide 23: Analysis of Results (RQ4 – Learning by Sampling)
	Slide 24: Analysis of Results (Software artifacts)
	Slide 25
	Slide 26: Summary
	Slide 27: Part of the contribution of my PhD Thesis
	Slide 28: Future Work
	Slide 29

