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Context

Analysis and modeling of SPLs

Family-based strategies
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Research Problem
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How can we leverage model learning concepts to the task of behavioral variability modeling?
Can we obtain models precise enough if we sample configurations?
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The FFSM ¢ can learn FESMs from a product models by employing state-based model comparison

and express product-specific behaviors with feature constraints using feature model analysis

C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning from Difference: An Automated Approach for Learning Family Models from Software Product Lines’, in 23" International Systems and Software

Product Line Conference, 2019
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N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013



State-based model comparisons,,

algorithm)
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Figure: Global similarity score *

Ssucc(a: b) =

Global similarity score (Outgoing and incoming transitions)
@ Pairwise similarity based on surrounding matching transitions and connected state pairs.
@ Attenuation ratio k gives precedence to the closest state pairs.

e Matching transitions and distinct transitions.

N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013



State-based model comparisons,,
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State-based model comparisons,,
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Table 1: Illustration of a system of linear equations
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The FFSM . algorithm
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Research Questions

RQ1) Effectiveness on learning succinct family models, given the total size of
the product pairs under learning

RQ?2) Size of learned family models vs. configuration similarity

RQ3) Effectiveness in learning succinct family models, given the total size of
the hand-crafted family models

RQ4) Effectives on learning precise family models by:samplingvs:-exhaustive?
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Subject Systems

SPL Feature model Family model

ID Name Features | Valid conf. | States | Transitions

AGM Arcade Game Maker 13 6 6 35

VM Vending Machine 9 20 14 197

WS Wiper System 8 8 13 112
AEROUCS Aero UCS 7 9 25 450
CPTERMINAL Card Payment 13 30 11 176
MINEPUMP Minepump 9 32 25 575

Table 10 — Description of the SPLs under learning - Feature and family models

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples'. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples

H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in ~FACS 2016.
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Experiment Design
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Experiment Design (cont)
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ANALYSIS OF RESULTS




Analy5is Of RESUItS (RQ1 and RQ3 - Size of Product

Pairs/Handcrafted)
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Figure 26 — Number of transitions in the learned FFSMs and pairs of products




An a Iys i S Of Re S u Its (RQ2 - Configuration similarity)

Pearson correlation coefficient - Pairwise analysis
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Analysis of Results,
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Figure 31 — Model precision by sampling criteria

Radboud University {G5¢

N
Ne s

More precise family models

Higher values of T

22



AnaIySis Of RESUItS (RQ4 - Learning by Sampling)
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Analysis of Results

(Software artifacts)
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The Featured Finite State Machine Learning project (aka
FFSM_Diff)
This repository contains the open source and open data from the Featured Finite State Machine Leaming project. This

project is a result of the PhD research of Carlos Diego Nascimento Damasceno at the Universidade de Sao Paulo under
the supervision of Adenilso Simao and Mohammad Mousavi.

This repository is organized as follows:

In folder FFSM_diff, we have the Java project of the FFSM_DIff algorithm. This project can be opened using the Eclipse
IDE and JDX version 1.5,

In folder Benchmark_SPL, there is & set of SPLs that can be used as subject systems. These SPLs are available as (F)FSM
and FTS models.
In folder docs, you find the webpage of the FFSM_Diff project.

In folder experiments, you find the directories containing the open data artifacts generated from studies using the
FFSM_Diff algorithm, These sub-folders are organized based on the project structure and naming conventions from
https://doi.org/10.1007/978-3-030-32489-6_17

Currently, this project has been used in two studies:
* Learning from Difference @ SPLC2019 (Sizes ~22MB})

* Learning by Sampling @ EMSEZ2020 (Size: ~46MBE)
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Summary 'Erk”

- Especially if there is high feature reuse (i.e., configuration similarity)

1. Learn fresh FFSMs from products pairs

2. Incorporate new product behaviour into an existing FFSM

- Family model recovery (e.g., reverse engineering, re-engineering)
3. Sampling lead to models as precise as those from exhaustive

learning

- Higher “T" values lead to higher coverage

- Sampling can be helpful to family model learning

Radboud University *j%f 26
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Future Work

r—
| Active family model
I
I

learning

r— —

| Fingerprinting evolving |l -

systems

—

Learning to

™

oT,

Ey

T
S. |

‘wi

oictone!

,1

N

Incremental

N
1 N\

=— =—> Configurable |K

Queries

l

oy

Learning from
Differences

]

FFSMpiq E

A A

y IN voin

SuL SuL
Prod 02 Prod n

Figure 32 — Active family model learning

Source: Damasceno (2019).

....................................................... >
Prod 1 Prod 2 Prod {1,2,n}
T = o
Product model Product model a family model
‘!out T out * out
Active automata Active family in
SUL leaming E model leaming R
Prod 01

I
out

Prod {1,2}

s

a family model

Learning by
Sampllng
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