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Introduction
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Software maintenance [IEEE, 2006]

“... modifications after delivery to correct 

faults, to improve non-functional attributes ...”

Software evolution [Lehman, 1979]

“... programs must be modified because they operate in or 

address problems in the real world ...”

IEEE, ‘ISO/IEC/IEEE International Standard for Software Engineering - Software Life Cycle Processes - Maintenance’, ISO/IEC 14764:2006, pp. 1–58, Sep. 2006
M. M. Lehman, ‘On understanding laws, evolution, and conservation in the large-program life cycle’, Journal of Systems and Software, vol. 1, pp. 213–221, 1979
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K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.
H. Chockler, D. Kroening, L. Mariani, and N. Sharygina, Eds., Validation of Evolving Software. Cham: Springer International Publishing, 2015.
M. S. Deutsch, ‘Tutorial Series 7 Software Project Verification and Validation’, Computer, vol. 14, no. 4, pp. 54–70, Apr. 1981
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Model-Based Testing (MBT)
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M. Utting, A. Pretschner, and B. Legeard, ‘A taxonomy of model-based testing approaches’, Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–312, 2012.
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Model-Based Testing (MBT)
Variability in Space
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Family model-based testing

T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.
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Introduction

7

Source code and models should be maintained and evolve together!



Research Problem

How can we efficiently and effectively learn finite 

state machines specifying the behavior of an 

evolving system?
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Research Objectives
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Learning to Reuse

Learning from 
Differences

Learning by 
Sampling



Adaptive Model Learning for Evolving SystemsPaper presented in the 15th Integrated Formal Methods, Bergen, Norway, 2019

Learning to Reuse

Adaptive Model Learning for Evolving Systems
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Context (Learning to Reuse)

1. Software analysis is a model-based activity

• Models stuck to engineers’ minds

• Formally denoted as explicit models

2. Software undergoes changes along the life-cycle

• Evolution over-time (e.g., update, upgrade)

• Models may become outdated

11

…

R. V. Binder, Testing Object-oriented Systems: Models, Patterns, and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.
N. Walkinshaw, ‘Chapter 1 - Reverse-Engineering Software Behavior’, in Advances in Computers, vol. 91, A. Memon, Ed. Elsevier, 2013, pp. 1–58.



Research Problem (Learning to Reuse)
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How can we efficiently construct behavioral models from evolving systems?



Contribution (Learning to Reuse)
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An adaptive algorithm that is more efficient than the state-of-the-art for 
learning behavioral models from evolving systems



Model Learning
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D. Angluin, ‘Learning regular sets from queries and counterexamples’, Information and Computation, vol. 75, no. 2, pp. 87–106, 1987
F. Vaandrager, ‘Model Learning’, Commun. ACM, vol. 60, no. 2, pp. 86–95, Jan. 2017

Transfer 

Sequences

Separating 

Sequences



System Under Learning
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Model Learning
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What if the SUL evolves?
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Model Learning for Evolving Systems
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Model Learning for Evolving Systems

19

Minimally Adequate 

Teacher
Equivalence Queries (EQ)

Membership Queries (MQ)

Yes || Counterexample

Query Output

Model Learning

Formulate

Version 1



Adaptive Model Learning

• What: Variant of model learning

• How: Reuse transfer/separating sequences from existing models

• Why: Speed up model learning

- Find states maintained in newer versions

- Reduce the time for model checking Transfer 

Sequences

Separating 

Sequences

D. Huistra, J. Meijer, and J. van de Pol, ‘Adaptive Learning for Learn-Based Regression Testing’, in Formal Methods for Industrial Critical Systems, 2018
S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, ‘Active Continuous Quality Control’, in Proceedings of the CBSE 2013
A. Groce, D. Peled, and M. Yannakakis, ‘Adaptive Model Checking’, in Proceedings of the TACAS 2002
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RESEARCH GAPS

• How can we find a subset of good-quality sequences? 

• Low quality sequences → Irrelevant MQs



Partial-Dynamic L∗
M algorithm
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1) On-the-fly exploration of the reused OT
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1) On-the-fly exploration of the reused OT
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1) On-the-fly exploration of the reused OT
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On-the-fly exploration of the tree representation of the set of transfer sequences

* On-the-fly: We alternate between the tree traversal steps and MQs



2) Build the experiment cover tree
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2) Build the experiment cover tree
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2) Build the experiment cover tree
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Group transfer sequences into equivalence classes to find a 
smaller subset of separating sequences



3) Starting L∗
M using the outcomes of ∂L∗

M
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Empirical Evaluation
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Empirical Evaluation (Research Questions)

RQ1) Is our technique more efficient than the state-of-the-art 

of adaptive learning?

RQ2) Is the effectiveness of adaptive learning strongly affected 

by the temporal distance between versions? 

D. Huistra, J. Meijer, and J. van de Pol, ‘Adaptive Learning for Learn-Based Regression Testing’, in Formal Methods for Industrial Critical Systems, 2018
S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, ‘Active Continuous Quality Control’, in Proceedings of the CBSE 2013
A. Groce, D. Peled, and M. Yannakakis, ‘Adaptive Model Checking’, in Proceedings of the TACAS 2002
J. de Ruiter, ‘A Tale of the OpenSSL State Machine: A Large-Scale Black-Box Analysis’, in Secure IT Systems, vol. 10014, B. B. Brumley and J. Röning, Eds. Cham: Springer, 2016,
M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
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Subject Systems

Subject systems: 18 state machines describing versions of the OpenSSL toolkit

OpenSSL Foundation, Inc., ‘OpenSSL Releases at Github’, 2018. https://github.com/openssl/openssl/releases.
J. de Ruiter, ‘A Tale of the OpenSSL State Machine: A Large-Scale Black-Box Analysis’, in Secure IT Systems, vol. 10014, B. B. Brumley and J. Röning, Eds. Cham: Springer, 2016,
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Analysis of Results (Average number of MQs)

The ∂L∗
M algorithm required fewer MQs than state of the art adaptive learning algorithmsThe temporal distance between versions did not affect the performance of the ∂L∗

M algorithm

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size
Pearson correlation coefficient
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Summary (Learning to Reuse)

The state-of-the-art adaptive learning algorithms…

1. More sensitive to software evolution!

The ∂L∗
M algorithm …

2. Required fewer MQs than the other techniques

3. Temporal distance did not affect its performance 

33



Research Objectives
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Learning to Reuse

Learning from 
Differences

Learning by 
Sampling



Learning from Difference

An Automated Approach for Learning Family Models from Software Product Lines

35



Context (Learning from Difference)

• Software product lines (SPL) 

- Variability in space (e.g., feature model)

- Common set of reusable assets

- Product configurations

36
K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.



Context (Learning from Difference)

• Analysis and modeling of SPLs

- Product-based strategies

▪ Traditional MBT + Individual product specifications

▪ E.g., exhaustive analysis, configuration sampling

37
T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.

ISSUES

▪ Redundant analysis

▪ Scalability (e.g., exponential)

▪ Feature interaction problem (e.g., T-wise)



Context (Learning from Difference)

• Analysis and modeling of SPLs

- Family-based strategies

▪ Corner-stone of efficient model-based SPL analysis

▪ Family models (e.g., Featured Finite State Machine - FFSM)

T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
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ISSUES

▪ Model maintenance and evolution

▪ Traceability vs. Crosscutting features

▪ Commonalities/variabilities are often unknown



Research Problem (Learning from Difference)

39

How can we leverage the concept of model learning to the task of behavioral variability modeling?



Contribution (Learning from Difference)
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The FFSM Difference (FFSM Diff) algorithm for learning succinct family 
models from individual product specifications of software product lines



Featured Finite State Machines (FFSM)
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An FFSM is a family-based representation of a product-line that unifies product-specific Mealy machines 
and captures the functionality of features and their interactions in terms of conditional states/transitions

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.



FFSM Difference (FFSM Diff)

The FFSM Diff can learn FFSMs from a product models by employing state-based model comparison and 
express product-specific behaviors with feature constraints using feature model analysis

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013
D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of feature models 20 years later: A literature review’, Information Systems, vol. 35, no. 6, pp. 615–636, 2010
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State-based model comparison (LTS Diff algorithm)

43
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

Comparing the Structures of Two State Machines of a Text Editor



State-based model comparison (LTS Diff algorithm)
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N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013



State-based model comparison (LTS Diff algorithm)
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State-based model comparison (LTS Diff algorithm)
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N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013



The FFSM Diff algorithm
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Our modification #1: The pair of initial states is assumed to be an initial landmark by definitionOur modification #2: The state mapping is used to annotate conditional states/transition



The FFSM Diff algorithm
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Our modification #3: We use feature model analysis to identify core features of the SPL and simplify feature constrains

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of feature models 20 years later: A literature review’, Information Systems, vol. 35, no. 6, pp. 615–636, 2010



Empirical Evaluation
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Empirical Evaluation

RQ1) Is our approach effective in learning succinct family models 

compared to the total size of the product pairs under learning?

RQ2) Is the size of learned family models influenced by the 

configuration similarity degree of the products under learning?

RQ3) Is our approach effective in learning succinct family models 

compared to the total size of the hand-crafted models?

50
C. Henard, et al., ‘Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-Wise Test Configurations for Software Product Lines’, IIEEE Trans. Software Eng., vol. 40, 2014



Empirical Evaluation

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thüm, et al., ‘FeatureIDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014
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Subject Systems

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples’. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples
H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
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https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples


Analysis of Results (RQ1 – Size of Product Pairs)

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size
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Analysis of Results (RQ2 – Configuration similarity)

54
Pearson correlation coefficient
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Analysis of Results (RQ3 – Size of Handcrafted models)

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size



Analysis of Results (RQ3 – Size of Handcrafted models)
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Analysis of Results (RQ3 – Size of Handcrafted models)

57
V. H. Fragal, ‘Automatic generation of configurable test-suites for software product lines’, PhD Thesis, Universidade de São Paulo, 2017.



Summary (Learning from Difference)

The FFSM Diff algorithm is able to…

1. Learn fresh FFSMs from products pairs

- Especially if there is high feature reuse (i.e., configuration similarity)

2. Incorporate new product behavior into an existing FFSM

- Family model recovery (e.g., reverse engineering, re-engineering)

58



Research Objectives
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Learning to Reuse

Learning from 
Differences

Learning by 
Sampling



Learning by Sampling
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Learning Behavioral Family Models from Software Product Lines



Context (Learning by Sampling)

• Software product lines (SPL) 

- Product-based strategies: Impractical?

- Family-based strategies: Models?

• Family model learning → FFSM Diff

- Exhaustive learning

- Learning by Sampling

61



Research Problem (Learning by Sampling)
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How can we optimize family model learning to make it more effective?



Contribution (Learning by Sampling)

63

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thüm, et al., ‘FeatureIDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014



Empirical Evaluation
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Empirical Evaluation

RQ4) Is our approach effective in learning precise  family 

models by sampling compared to exhaustive learning?

65



Subject Systems

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples’. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples
H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
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https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples
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Analysis of Results (RQ4 – Learning by Sampling)

Higher values of T 
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Summary (Learning by Sampling)

1. Learning by sampling can lead to family models as precise as

those obtained by exhaustive analysis

2.Higher interaction strengths lead to higher coverage

3. We show evidences that product sampling can be helpful to 

family model learning and recovery

68



Final Remarks and Future 
Work
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Learning to Reuse

Learning from 
Differences

Learning by 
Sampling

Contributions of this PhD Thesis

C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning to reuse: Adaptive model learning for evolving systems’, in 15th Integrated Formal Methods, Bergen, Norway, 2019
C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning from Difference: An Automated Approach for Learning Family Models from Software Product Lines’, in 23rd International Systems and Software Product Line Conference, 2019
C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning by sampling: Evaluating t-wise sampling for learning family models’. Empirical Software Engineering (Submitted and under review), 2020. 
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The main publications of this PhD Thesis

71



Other contributions
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Learning to Reuse

Learning from 
Differences

Learning by 
Sampling

Future Work

M. Isberner, F. Howar, and B. Steffen, ‘The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning’, in Runtime Verification, 2014
C. D. N. Damasceno, ‘Learning From Families: Inferring Behavioral Variability From Software Product Lines’, presented at the PhD Symposium at Integrated Formal Methods, Bergen, Norway, 2019.
M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, ‘IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sampling’, in Proceedings of the GPCE 2016
G. Shu and D. Lee, ‘Network Protocol System Fingerprinting - A Formal Approach’, in Proceedings of the IEEE INFOCOM 2006

Adaptive Learning for 
Discrimination Tree-Based 

Methods

Active family model
learning

73

Incremental 
Configurable

Queries

Fingerprinting evolving
systems



Thank you
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