
Learning finite state machine
models of evolving systems:
From evolution over time to variability in space

Carlos Diego Nascimento Damasceno
Advisors: Adenilso Simão (University of Sao Paulo) & Mohammad Mousavi (University of Leicester)

1

Agenda

1. Introduction

2. Research Problem

3. Research Objectives

- Learning to Reuse

- Learning from Difference

- Learning by Sampling

4. Final Remarks and Future Work

2

Introduction

3

Software maintenance [IEEE, 2006]

“... modifications after delivery to correct

faults, to improve non-functional attributes ...”

Software evolution [Lehman, 1979]

“... programs must be modified because they operate in or

address problems in the real world ...”

IEEE, ‘ISO/IEC/IEEE International Standard for Software Engineering - Software Life Cycle Processes - Maintenance’, ISO/IEC 14764:2006, pp. 1–58, Sep. 2006
M. M. Lehman, ‘On understanding laws, evolution, and conservation in the large-program life cycle’, Journal of Systems and Software, vol. 1, pp. 213–221, 1979

Introduction

………

Version 1

Configuration 2

Configuration m

Evolution over time

V
a
r
i
a
b
i
l
i
t
y

i
n

s
p
a
c
e

…
Version nVersion 2 Version 3

K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.
H. Chockler, D. Kroening, L. Mariani, and N. Sharygina, Eds., Validation of Evolving Software. Cham: Springer International Publishing, 2015.
M. S. Deutsch, ‘Tutorial Series 7 Software Project Verification and Validation’, Computer, vol. 14, no. 4, pp. 54–70, Apr. 1981

4

Configuration 1

Introduction

5

Model-Based Testing (MBT)

V1.0

…

VnV2.0

Evolution over time

V3.0

M. Utting, A. Pretschner, and B. Legeard, ‘A taxonomy of model-based testing approaches’, Software Testing, Verification and Reliability, vol. 22, no. 5, pp. 297–312, 2012.

Introduction

Model-Based Testing (MBT)
Variability in Space

Conf. mConf. 2

Features

C
o
n
f
i
g
u
r
a
t
i
o
n
s

Family model-based testing

T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.

6

Introduction

7

Source code and models should be maintained and evolve together!

Research Problem

How can we efficiently and effectively learn finite

state machines specifying the behavior of an

evolving system?

8

Research Objectives

9

Learning to Reuse

Learning from
Differences

Learning by
Sampling

Adaptive Model Learning for Evolving SystemsPaper presented in the 15th Integrated Formal Methods, Bergen, Norway, 2019

Learning to Reuse

Adaptive Model Learning for Evolving Systems

10

Context (Learning to Reuse)

1. Software analysis is a model-based activity

• Models stuck to engineers’ minds

• Formally denoted as explicit models

2. Software undergoes changes along the life-cycle

• Evolution over-time (e.g., update, upgrade)

• Models may become outdated

11

…

R. V. Binder, Testing Object-oriented Systems: Models, Patterns, and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.
N. Walkinshaw, ‘Chapter 1 - Reverse-Engineering Software Behavior’, in Advances in Computers, vol. 91, A. Memon, Ed. Elsevier, 2013, pp. 1–58.

Research Problem (Learning to Reuse)

12

How can we efficiently construct behavioral models from evolving systems?

Contribution (Learning to Reuse)

13

An adaptive algorithm that is more efficient than the state-of-the-art for
learning behavioral models from evolving systems

Model Learning

14

Minimally Adequate

Teacher (MAT)

Model-Based Testing

(MBT)

O
u
t
p
u
t

R
e
s
e
t

+

I
n
p
u
t
s

Equivalence Queries (EQ)

Membership Queries (MQ)

Yes || Counterexample

Query Output

Model Learning

Algorithm

Formulate

D. Angluin, ‘Learning regular sets from queries and counterexamples’, Information and Computation, vol. 75, no. 2, pp. 87–106, 1987
F. Vaandrager, ‘Model Learning’, Commun. ACM, vol. 60, no. 2, pp. 86–95, Jan. 2017

Transfer

Sequences

Separating

Sequences

System Under Learning

15

Model Learning

16

What if the SUL evolves?

17

Model Learning for Evolving Systems

18

Model Learning for Evolving Systems

19

Minimally Adequate

Teacher
Equivalence Queries (EQ)

Membership Queries (MQ)

Yes || Counterexample

Query Output

Model Learning

Formulate

Version 1

Adaptive Model Learning

• What: Variant of model learning

• How: Reuse transfer/separating sequences from existing models

• Why: Speed up model learning

- Find states maintained in newer versions

- Reduce the time for model checking Transfer

Sequences

Separating

Sequences

D. Huistra, J. Meijer, and J. van de Pol, ‘Adaptive Learning for Learn-Based Regression Testing’, in Formal Methods for Industrial Critical Systems, 2018
S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, ‘Active Continuous Quality Control’, in Proceedings of the CBSE 2013
A. Groce, D. Peled, and M. Yannakakis, ‘Adaptive Model Checking’, in Proceedings of the TACAS 2002

20

RESEARCH GAPS

• How can we find a subset of good-quality sequences?

• Low quality sequences → Irrelevant MQs

Partial-Dynamic L∗
M algorithm

21

1) On-the-fly exploration of the reused OT

22

1) On-the-fly exploration of the reused OT

23

1) On-the-fly exploration of the reused OT

24

On-the-fly exploration of the tree representation of the set of transfer sequences

* On-the-fly: We alternate between the tree traversal steps and MQs

2) Build the experiment cover tree

25

2) Build the experiment cover tree

26

2) Build the experiment cover tree

27

Group transfer sequences into equivalence classes to find a
smaller subset of separating sequences

3) Starting L∗
M using the outcomes of ∂L∗

M

28

Empirical Evaluation

29

Empirical Evaluation (Research Questions)

RQ1) Is our technique more efficient than the state-of-the-art

of adaptive learning?

RQ2) Is the effectiveness of adaptive learning strongly affected

by the temporal distance between versions?

D. Huistra, J. Meijer, and J. van de Pol, ‘Adaptive Learning for Learn-Based Regression Testing’, in Formal Methods for Industrial Critical Systems, 2018
S. Windmüller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, ‘Active Continuous Quality Control’, in Proceedings of the CBSE 2013
A. Groce, D. Peled, and M. Yannakakis, ‘Adaptive Model Checking’, in Proceedings of the TACAS 2002
J. de Ruiter, ‘A Tale of the OpenSSL State Machine: A Large-Scale Black-Box Analysis’, in Secure IT Systems, vol. 10014, B. B. Brumley and J. Röning, Eds. Cham: Springer, 2016,
M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015

30

Subject Systems

Subject systems: 18 state machines describing versions of the OpenSSL toolkit

OpenSSL Foundation, Inc., ‘OpenSSL Releases at Github’, 2018. https://github.com/openssl/openssl/releases.
J. de Ruiter, ‘A Tale of the OpenSSL State Machine: A Large-Scale Black-Box Analysis’, in Secure IT Systems, vol. 10014, B. B. Brumley and J. Röning, Eds. Cham: Springer, 2016,

31

Analysis of Results (Average number of MQs)

The ∂L∗
M algorithm required fewer MQs than state of the art adaptive learning algorithmsThe temporal distance between versions did not affect the performance of the ∂L∗

M algorithm

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size
Pearson correlation coefficient

32

Summary (Learning to Reuse)

The state-of-the-art adaptive learning algorithms…

1. More sensitive to software evolution!

The ∂L∗
M algorithm …

2. Required fewer MQs than the other techniques

3. Temporal distance did not affect its performance

33

Research Objectives

34

Learning to Reuse

Learning from
Differences

Learning by
Sampling

Learning from Difference

An Automated Approach for Learning Family Models from Software Product Lines

35

Context (Learning from Difference)

• Software product lines (SPL)

- Variability in space (e.g., feature model)

- Common set of reusable assets

- Product configurations

36
K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

Context (Learning from Difference)

• Analysis and modeling of SPLs

- Product-based strategies

▪ Traditional MBT + Individual product specifications

▪ E.g., exhaustive analysis, configuration sampling

37
T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.

ISSUES

▪ Redundant analysis

▪ Scalability (e.g., exponential)

▪ Feature interaction problem (e.g., T-wise)

Context (Learning from Difference)

• Analysis and modeling of SPLs

- Family-based strategies

▪ Corner-stone of efficient model-based SPL analysis

▪ Family models (e.g., Featured Finite State Machine - FFSM)

T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, ‘A Classification and Survey of Analysis Strategies for Software Product Lines’, ACM Comput. Surv., vol. 47, no. 1, p. 6:1–6:45, Jun. 2014
S. Oster, ‘Feature Model-based Software Product Line Testing’, PhD Thesis, Technische Universität, Darmstadt, 2012.
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.

38

ISSUES

▪ Model maintenance and evolution

▪ Traceability vs. Crosscutting features

▪ Commonalities/variabilities are often unknown

Research Problem (Learning from Difference)

39

How can we leverage the concept of model learning to the task of behavioral variability modeling?

Contribution (Learning from Difference)

40

The FFSM Difference (FFSM Diff) algorithm for learning succinct family
models from individual product specifications of software product lines

Featured Finite State Machines (FFSM)

41

An FFSM is a family-based representation of a product-line that unifies product-specific Mealy machines
and captures the functionality of features and their interactions in terms of conditional states/transitions

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.

FFSM Difference (FFSM Diff)

The FFSM Diff can learn FFSMs from a product models by employing state-based model comparison and
express product-specific behaviors with feature constraints using feature model analysis

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013
D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of feature models 20 years later: A literature review’, Information Systems, vol. 35, no. 6, pp. 615–636, 2010

42

State-based model comparison (LTS Diff algorithm)

43
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

Comparing the Structures of Two State Machines of a Text Editor

State-based model comparison (LTS Diff algorithm)

44
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

State-based model comparison (LTS Diff algorithm)

45

State-based model comparison (LTS Diff algorithm)

46
N. Walkinshaw and K. Bogdanov, ‘Automated Comparison of State-Based Software Models in Terms of Their Language and Structure’, ACM TOSEM, vol. 22, 2013

The FFSM Diff algorithm

47

Our modification #1: The pair of initial states is assumed to be an initial landmark by definitionOur modification #2: The state mapping is used to annotate conditional states/transition

The FFSM Diff algorithm

48

Our modification #3: We use feature model analysis to identify core features of the SPL and simplify feature constrains

V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.
D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘Automated analysis of feature models 20 years later: A literature review’, Information Systems, vol. 35, no. 6, pp. 615–636, 2010

Empirical Evaluation

49

Empirical Evaluation

RQ1) Is our approach effective in learning succinct family models

compared to the total size of the product pairs under learning?

RQ2) Is the size of learned family models influenced by the

configuration similarity degree of the products under learning?

RQ3) Is our approach effective in learning succinct family models

compared to the total size of the hand-crafted models?

50
C. Henard, et al., ‘Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-Wise Test Configurations for Software Product Lines’, IIEEE Trans. Software Eng., vol. 40, 2014

Empirical Evaluation

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thüm, et al., ‘FeatureIDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014

51

Subject Systems

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples’. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples
H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.

52

https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples

Analysis of Results (RQ1 – Size of Product Pairs)

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size

53

Analysis of Results (RQ2 – Configuration similarity)

54
Pearson correlation coefficient

55

Analysis of Results (RQ3 – Size of Handcrafted models)

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size

Analysis of Results (RQ3 – Size of Handcrafted models)

56

Analysis of Results (RQ3 – Size of Handcrafted models)

57
V. H. Fragal, ‘Automatic generation of configurable test-suites for software product lines’, PhD Thesis, Universidade de São Paulo, 2017.

Summary (Learning from Difference)

The FFSM Diff algorithm is able to…

1. Learn fresh FFSMs from products pairs

- Especially if there is high feature reuse (i.e., configuration similarity)

2. Incorporate new product behavior into an existing FFSM

- Family model recovery (e.g., reverse engineering, re-engineering)

58

Research Objectives

59

Learning to Reuse

Learning from
Differences

Learning by
Sampling

Learning by Sampling

60

Learning Behavioral Family Models from Software Product Lines

Context (Learning by Sampling)

• Software product lines (SPL)

- Product-based strategies: Impractical?

- Family-based strategies: Models?

• Family model learning → FFSM Diff

- Exhaustive learning

- Learning by Sampling

61

Research Problem (Learning by Sampling)

62

How can we optimize family model learning to make it more effective?

Contribution (Learning by Sampling)

63

M. Isberner, F. Howar, and B. Steffen, ‘The Open-Source LearnLib’, in CAV 2015
Apache, Commons Math: The Apache Commons Mathematics Library. 2016.
T. Thüm, et al., ‘FeatureIDE: An extensible framework for feature-oriented software development’, Science of Computer Programming, vol. 79, 2014

Empirical Evaluation

64

Empirical Evaluation

RQ4) Is our approach effective in learning precise family

models by sampling compared to exhaustive learning?

65

Subject Systems

A. Classen, ‘Modelling with FTS: a Collection of Illustrative Examples’. 2010, [Online]. Available: https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples
H. Samih, H. L. Guen, R. Bogusch, M. Acher, and B. Baudry, ‘Deriving Usage Model Variants for Model-Based Testing: An Industrial Case Study’, in Proceedings of the ICECCS 2014
X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans, ‘Search-based Similarity-driven Behavioural SPL Testing’, in Proceedings of the VaMoS 2016
V. Hafemann Fragal, A. Simao, and M. R. Mousavi, ‘Validated Test Models for Software Product Lines: Featured Finite State Machines’, in `FACS 2016.

66

https://researchportal.unamur.be/en/publications/modelling-with-fts-a-collection-of-illustrative-examples

67

Analysis of Results (RQ4 – Learning by Sampling)

Higher values of T

M
o

re
 p

re
ci

se
 f

a
m

il
y

 m
o

d
el

s

Mann-Whitney-Wilcoxon statistical test
Vargha-Delaney’s Â effect size

Summary (Learning by Sampling)

1. Learning by sampling can lead to family models as precise as

those obtained by exhaustive analysis

2.Higher interaction strengths lead to higher coverage

3. We show evidences that product sampling can be helpful to

family model learning and recovery

68

Final Remarks and Future
Work

69

Learning to Reuse

Learning from
Differences

Learning by
Sampling

Contributions of this PhD Thesis

C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning to reuse: Adaptive model learning for evolving systems’, in 15th Integrated Formal Methods, Bergen, Norway, 2019
C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning from Difference: An Automated Approach for Learning Family Models from Software Product Lines’, in 23rd International Systems and Software Product Line Conference, 2019
C. D. N. Damasceno, M. R. Mousavi, and A. Simao, ‘Learning by sampling: Evaluating t-wise sampling for learning family models’. Empirical Software Engineering (Submitted and under review), 2020.

70

The main publications of this PhD Thesis

71

Other contributions

72

Learning to Reuse

Learning from
Differences

Learning by
Sampling

Future Work

M. Isberner, F. Howar, and B. Steffen, ‘The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning’, in Runtime Verification, 2014
C. D. N. Damasceno, ‘Learning From Families: Inferring Behavioral Variability From Software Product Lines’, presented at the PhD Symposium at Integrated Formal Methods, Bergen, Norway, 2019.
M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, ‘IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sampling’, in Proceedings of the GPCE 2016
G. Shu and D. Lee, ‘Network Protocol System Fingerprinting - A Formal Approach’, in Proceedings of the IEEE INFOCOM 2006

Adaptive Learning for
Discrimination Tree-Based

Methods

Active family model
learning

73

Incremental
Configurable

Queries

Fingerprinting evolving
systems

Thank you

Questions?

74

	Slide 1: Learning finite state machine models of evolving systems: From evolution over time to variability in space
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Research Problem
	Slide 9: Research Objectives
	Slide 10: Learning to Reuse
	Slide 11: Context (Learning to Reuse)
	Slide 12: Research Problem (Learning to Reuse)
	Slide 13: Contribution (Learning to Reuse)
	Slide 14: Model Learning
	Slide 15: System Under Learning
	Slide 16: Model Learning
	Slide 17
	Slide 18: Model Learning for Evolving Systems
	Slide 19: Model Learning for Evolving Systems
	Slide 20: Adaptive Model Learning
	Slide 21: Partial-Dynamic L∗M algorithm
	Slide 22: 1) On-the-fly exploration of the reused OT
	Slide 23: 1) On-the-fly exploration of the reused OT
	Slide 24: 1) On-the-fly exploration of the reused OT
	Slide 25: 2) Build the experiment cover tree
	Slide 26: 2) Build the experiment cover tree
	Slide 27: 2) Build the experiment cover tree
	Slide 28: 3) Starting L∗M using the outcomes of ∂L∗M
	Slide 29
	Slide 30: Empirical Evaluation (Research Questions)
	Slide 31: Subject Systems
	Slide 32: Analysis of Results (Average number of MQs)
	Slide 33: Summary (Learning to Reuse)
	Slide 34: Research Objectives
	Slide 35: Learning from Difference
	Slide 36: Context (Learning from Difference)
	Slide 37: Context (Learning from Difference)
	Slide 38: Context (Learning from Difference)
	Slide 39: Research Problem (Learning from Difference)
	Slide 40: Contribution (Learning from Difference)
	Slide 41: Featured Finite State Machines (FFSM)
	Slide 42: FFSM Difference (FFSM Diff)
	Slide 43: State-based model comparison (LTS Diff algorithm)
	Slide 44: State-based model comparison (LTS Diff algorithm)
	Slide 45: State-based model comparison (LTS Diff algorithm)
	Slide 46: State-based model comparison (LTS Diff algorithm)
	Slide 47: The FFSM Diff algorithm
	Slide 48: The FFSM Diff algorithm
	Slide 49
	Slide 50: Empirical Evaluation
	Slide 51: Empirical Evaluation
	Slide 52: Subject Systems
	Slide 53: Analysis of Results (RQ1 – Size of Product Pairs)
	Slide 54: Analysis of Results (RQ2 – Configuration similarity)
	Slide 55: Analysis of Results (RQ3 – Size of Handcrafted models)
	Slide 56: Analysis of Results (RQ3 – Size of Handcrafted models)
	Slide 57: Analysis of Results (RQ3 – Size of Handcrafted models)
	Slide 58: Summary (Learning from Difference)
	Slide 59: Research Objectives
	Slide 60: Learning by Sampling
	Slide 61: Context (Learning by Sampling)
	Slide 62: Research Problem (Learning by Sampling)
	Slide 63: Contribution (Learning by Sampling)
	Slide 64
	Slide 65: Empirical Evaluation
	Slide 66: Subject Systems
	Slide 67: Analysis of Results (RQ4 – Learning by Sampling)
	Slide 68: Summary (Learning by Sampling)
	Slide 69: Final Remarks and Future Work
	Slide 70: Contributions of this PhD Thesis
	Slide 71: The main publications of this PhD Thesis
	Slide 72: Other contributions
	Slide 73: Future Work
	Slide 74: Thank you

