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Context

Figure: In software product lines (SPL), software variants are developed simultaneously
from a common set of reusable assets
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Context - Family models
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Figure: A family model unifies multiple state machines of a product-line into a
single model where states and transitions are annotated with feature constraints 3

3e.g., featured finite state machine - FFSM (Fragal et al., 2017)
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Problem Statement

- Family-based analysis (e.g., model-based testing 4 and model checking 5)

- Cost as a function of the number of features and amount of feature sharing

- Redundant analysis are avoided/minimised

, Creation and maintenance of family and product models are challenging

, Outdated models may arise as products evolve

4Fragal et al. (2017)
5ter Beek et al. (2017)
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Research objective

Investigate approaches to support the automated
construction of family models from SPLs
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RQ1) How can we effectively infer product models
from evolving system?
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Model Learning

Teacher Learning Algorithm
( L*M )

SUL

Figure: The Minimally Adequate Teacher (MAT) framework (Angluin, 1987)
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Model Learning

Teacher Learning Algorithm
( L*M )

Outputs Query Output

Reset + inputs Membership Query (MQ)

Observation Table

                     E
S

S · I

SUL

Figure: The Minimally Adequate Teacher (MAT) framework (Angluin, 1987)
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Model Learning

Teacher

MBT

Learning Algorithm
( L*M )
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Figure: The Minimally Adequate Teacher (MAT) framework (Angluin, 1987)
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Model Learning (Example)

off

rain/0
 swItv / 1 

Figure: Initial Hypothesis

rain swItv

S ε 0 1

S · I rain 0 1
swItv 1 0

Table: Initial observation table (OT)
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Model Learning (Example)

off

rain/0
 swItv / 1 

Figure: First Hypothesis

rain swItv

S ε 0 1

S · I rain 0 1
swItv 1 0

Table: First observation table
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Model Learning (Example)

itv

 swItv / 1 
rain / 1

off

 swItv / 0 

rain/0

Figure: Second Hypothesis

rain swItv

S
ε 0 1
swItv 1 0

S · I
rain 0 1
swItv · rain 0 1
swItv · swItv 0 1

Table: Second observation table
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Model Learning (Example)

itv

 swItv / 1 
rain / 1

off

 swItv / 0 

rain/0

Figure: Second Hypothesis

rain swItv

S
ε 0 1
swItv 1 0

S · I
rain 0 1
swItv · rain 0 1
swItv · swItv 0 1

Table: Second observation table (H 6= SUL)

EQ = swItv · rain · rain · rain
1 · 1 · 1 · 1 6= 1 · 1 · 0 · 1
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Model Learning (Example)

itv

rain / 0

rain

rain / 1 swItv / 1 
swItv / 1

off

 swItv / 0 

rain/0

Figure: Mealy machine of a windscreen wiper
supporting intervaled and fast wiping

rain swItv rain · rain

S
ε 0 1 0 · 0
swItv 1 0 1 · 0
swItv · rain 0 1 0 · 1

S · I

rain 0 1 0 · 0
swItv · swItv 0 1 0 · 0
swItv · rain · rain 1 0 1 · 0
swItv · rain · swItv 0 1 0 · 1

Table: Final OT

Damasceno C.D.N. et al. Learning from Families @ iFM 2019 December 3rd 2019 12 / 32



What if our SUL evolves?
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Adaptive model learning for evolving systems

Reuse transfer and/or separating sequences from pre-existing models
I Reduce the time for model checking (Groce et al., 2002; Chaki et al., 2008)
I Find states maintained in newer versions (Windmüller et al., 2013)

Research Gaps:
I Reuse low quality sequences → Irrelevant MQs (Huistra et al., 2018)
I How can we calculate good-quality subsets of sequences?
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The partial-Dynamic L∗M algorithm 6
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6Accepted at the iFM 2019 (Damasceno et al., 2019b) - Thu @ 10:30 - Aud 1
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Step 1: On-the-fly exploration of the reused OT
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Figure: The partial-Dynamic L∗M algorithm starts by exploring reused OTs on-the-fly to
discard redundant transfer sequences 7

7Improvement #1: We optimized Chaki et al. (2008)
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Step 2: Building an experiment cover tree

Software evolution
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Figure: The partial-Dynamic L∗M algorithm searches for
deprecated separating sequences 8

8Improvement #2: We used breadth-first search to minimize the set of separating sequences
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Step 3: Running L∗M using the outcomes of partial-Dynamic L∗M

Software evolution
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Figure: The L∗M algorithm starts by reusing transfer and separating sequences to reach and
distinguish more states than in the traditional setup (i.e., initial state only) 9

9Improvement #3: We use the subsets of reused sequences as the initial setup for model learning
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partial-Dynamic L∗M - Empirical evaluation
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Figure: OpenSSL toolkit: 18 FSMs versions used as SUL (de Ruiter, 2016)
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partial-Dynamic L∗M - Main findings
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Figure: Our technique required less MQs
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Figure: Our technique was not influenced by the temporal distance between versions
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RQ2) How can we merge state machines
into family models?
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The FFSMDiff algorithm10

Product 1: (AGM & N & ¬B)
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Figure: An automated technique to learn fresh FFSM and include new FSMs into existing FFSMs

by comparing products models and incorporating variability to
express product-specific behaviors with feature constraints

10
This paper has been published at the SPLC 2019 (Damasceno et al., 2019a)
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The FFSMDiff algorithm - Main findings
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Figure: Product models can be effectively merged into succinct FFSMs,
especially if there is high feature sharing
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The FFSMDiff algorithm - Main findings
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Figure: Alternative FFSM for AGM with fewer states (Fragal, 2017)
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RQ3) Family model learning
(Optimization)
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Family model learning (Optimization)
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Figure: Family Model Learning
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Family model learning (Optimization)

Replace traditional FSMs by partial family models
I Expected result: reduction on the number of queries

Current issue:
I Lack of FSMs large and complex enough for family model learning
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Summary

RQ1
Product model learning

RQ2
Products model 

merging

RQ3
Family model learning

(Optimization)

Figure: Summary
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Future work
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Figure: Future work
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Questions?

https://damascenodiego.github.io/projects/
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