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Figure: Introduce an approach for learning succinct family models from products specifications
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Featured Finite State Machines
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Arcade Game Maker

Figure: The Arcade Game Maker SPL
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Featured Finite State Machine (FFSM)
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Figure: An FFSM unifies multiple finite state machines of a product-line into a single model
where states and transitions are annotated with feature constraints

(i.e., conditional states and conditional transitions) 1

1Fragal et al. (2017)
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Featured Finite State Machine (FFSM)
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Featured Finite State Machine (FFSM)

- Family-based analysis (e.g., model-based testing 2 and model checking 3)

- Cost as a function of the number of features and amount of feature sharing

- Redundant analysis are avoided/minimised

, Creation and maintenance of family models is challenging

, Outdated family models may arise as product instances evolve

2Fragal et al. (2017)
3ter Beek et al. (2017)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 6 / 28



The FFSMDiff algorithm
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The FFSMDiff algorithm
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Figure: An automated technique to learn fresh FFSM and include new FSMs into existing FFSMs

by comparing products models and incorporating variability to
express product-specific behaviors with feature constraints
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The FFSMDiff algorithm – Global similarity score
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Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
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The FFSMDiff algorithm – Similarity score (Running example)
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Figure: Two examples of product FSMs and their similarity scores
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The FFSMDiff algorithm – Similarity score (Running example)

SG
Succ (Pa,Pa) =

1

2
×

3 + k × [SG
Succ (St, St) + SG

Succ (Bo,Po) + SG
Succ (Pa,Pa)]

0 + 0 + 3
= 0.58

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs and their similarity scores

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 10 / 28



The FFSMDiff algorithm – State similarity (Running example)
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The FFSMDiff algorithm – Incorporating variability

Bowling*Pong
                 Exit/1

Start*Start

                           Exit/0

Start/1

Figure: Fragment of the FFSM learnt from two products of the AGM SPL.

Product configuration – Example

ρBowling = (AGM ∧ A ∧M ∧ L ∧ V ∧ Y ∧ P ∧W ∧ ¬S ∧ ¬B ∧ ¬N)
ρPong = (AGM ∧ A ∧M ∧ L ∧ V ∧ Y ∧ P ∧ N ∧ ¬S ∧ ¬B ∧ ¬W )
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The FFSMDiff algorithm – Incorporating variability

Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1
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Exit[(W&¬S&¬B&¬N)]/0

Figure: Fragment of the FFSM learnt from two products of the AGM SPL.

Simplified configuration – Example

ρBowling = (W ∧ ¬S ∧ ¬B ∧ ¬N)
ρPong = (N ∧ ¬S ∧ ¬B ∧ ¬W )
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Empirical Evaluation
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Empirical evaluation – Research Questions (RQ)

(RQ1) Is our automated technique effective in learning succinct family models
compared to the total size of product analyzed?

(RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

(RQ3) Is our automated technique effective in learning succinct family models
compared to hand-crafted family models?
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Empirical evaluation – Subject systems 5

SPL Number of Sum total of states in

ID Name Features Valid config. FFSM All products

AGM Arcade Game Maker 13 6 6 21

WS Wiper System 8 8 13 56

VM Vending Machine 9 20 14 207

Total number of products: 34 products

Table: Description of the SPLs under learning

5Fragal et al. (2017); Classen (2010)
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Analysis of Results (FFSM learnt vs. Size of product pairs)

RQ1) Is the FFSMDiff algorithm effective in learning succinct family models
compared to the total size of the products?
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Figure: We found statistically significant difference (p < 0.01) and large effect sizes between the
size of learnt FFSMs and total size of products pairs
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Figure: The size of learnt FFSMs is at most equal to the total size of products pairs analyzed
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Analysis of Results (FFSM learnt vs. Feature reuse)

RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

Figure: We found a strong negative correlation between FFSM size and amount of feature reuse
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Analysis of Results (FFSM learnt vs. Feature reuse)

RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

Figure: FFSMs learnt from products implementing a similar set of features tend to be more succinct
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Analysis of Results (FFSMs learnt from the whole family)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?
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Figure: Two FFSMs were learnt with fewer states and one with the same original size
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Analysis of Results (FFSMs learnt from products pairs)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?
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Figure: We found significant differences (p < 0.01) and large effect sizes for two SPLs
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Analysis of Results (FFSMs learnt from the AGM SPL)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?
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Figure: The AGM FFSM with separated states
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Analysis of Results (FFSMs learnt from the AGM SPL)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
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aFragal (2017)
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Final remarks

Final remarks

The creation and maintenance of family models is chllenging

FFSMDiff is an effective algorithm
I Learning fresh FFSMs from products pairs
I Including an FSMs into an existing FFSM model
I Especially if there is high feature reuse

Our work complements reverse engineering techniques and SPL analysis
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Figure: The FFSMDiff algorithm is available online at
https://damascenodiego.github.io/learningFFSM/
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Future work

Configuration simplification techniques

Context m

Presence Condition p

Simplif ed Presence Condition simp(p,m)

Figure: Configuration simplification techniques a

avon Rhein et al. (2015)
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Future work

Configuration selection/prioritization

Greedy Code

1−wisePair−wiset−wise

Technique

Automatic Selection Coverage

Meta-Heuristic Feature Interaction

Local Search

Manual
Selection

Population-Based
Search

Semi-Automatic
Selection

Figure: Techniques for configuration selection a

aVarshosaz et al. (2018)
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Future work

Active learning of family models

Active family model
learning

Figure: Active learning of FFSMs a

aVaandrager (2017)
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Future work

Learning hierarchical FFSMs
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aFragal et al. (2019)
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Thank you!

https://damascenodiego.github.io/learningFFSM/
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Questions?

https://damascenodiego.github.io/learningFFSM/
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