
Learning from Difference: An Automated Approach for Learning
Family Models from Software Product Lines

Carlos Diego N. Damasceno
damascenodiego@usp.br

University of Sao Paulo, BR and
University of Leicester, UK

Mohammad Reza Mousavi
mm789@leicester.ac.uk
University of Leicester

Leicester,UK

Adenilso Simao
adenilso@icmc.usp.br

University of Sao Paulo (USP)
São Carlos, SP, BR

September 6, 2019

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 1 / 28

Research objective

...
 SUT

 Prod n
 SUT

 Prod 02
 SUT

 Prod 01

Product model

Prod 1

Product model

Prod {1,2}

Family model

SPL

...
Product model

Prod n

FFSMDiff

out

in

Σsize() ≥

Figure: Introduce an approach for learning succinct family models from products specifications

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 2 / 28

Featured Finite State Machines

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 3 / 28

Arcade Game Maker

Figure: The Arcade Game Maker SPL

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 4 / 28

Featured Finite State Machine (FFSM)

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

ρBowling= (AGM∧A∧M∧L∧V∧Y∧P∧W∧¬S∧¬B∧¬N)

ρPong= (AGM∧A∧M∧L∧V∧Y∧P∧N∧¬S∧¬B∧¬W)

Figure: An FFSM unifies multiple finite state machines of a product-line into a single model
where states and transitions are annotated with feature constraints

(i.e., conditional states and conditional transitions) 1

1Fragal et al. (2017)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 5 / 28

Featured Finite State Machine (FFSM)

Start/1

Start/1

Start/1Start/1
Pause/1

Save[S]/1

Start/1

Pause/1
Save[S]/1

Save[S]/1

Pause/1
Pause[W]/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Start/0

Exit/0
Pause[!W]/1
Pause[W]/0

Save/0
Exit[!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1
Exit[S]/1

Pause[!W]/0

Start/1
Save Game[S]Pause Game

Pong[N]

Bowling[W]

Brickles[B]

Star t Game

Figure: An FFSM unifies multiple finite state machines of a product-line into a single model
where states and transitions are annotated with feature constraints

(i.e., conditional states and conditional transitions) 1

1Fragal et al. (2017)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 5 / 28

Featured Finite State Machine (FFSM)

- Family-based analysis (e.g., model-based testing 2 and model checking 3)

- Cost as a function of the number of features and amount of feature sharing

- Redundant analysis are avoided/minimised

, Creation and maintenance of family models is challenging

, Outdated family models may arise as product instances evolve

2Fragal et al. (2017)
3ter Beek et al. (2017)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 6 / 28

The FFSMDiff algorithm

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 7 / 28

The FFSMDiff algorithm

Product 1: (AGM & N & ¬B)

TRUE N
Start/1

Exit / 1

Start/0Exit/0
Pause/0

Product 2: (AGM & B & ¬N)

TRUE B
Start/1

Start/0
Exit/0

Exit/0
Pause/0

AGM

B N

AGM

B N

 Product 1 | 2: (AGM & N & ¬B) | (AGM & B & ¬N)

TRUE [B|N]
Start[B|N]/1

Exit[N]/1

Start[B|N]/0
Exit[B]/0

Exit[B|N]/0
Pause[B|N]/0 AGM

B NFi
nd

 c
om

m
on

 s
ta

te
s

+
Fe

at
ur

e
co

ns
tra

in
ts

 c
on

st
ru

ct
io

n

Sy
st

em
ca

lc
ul

at
io

n
Figure: An automated technique to learn fresh FFSM and include new FSMs into existing FFSMs

by comparing products models and incorporating variability to
express product-specific behaviors with feature constraints

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 8 / 28

The FFSMDiff algorithm – Global similarity score

SG
Succ (a, b) =

1

2

∑
(c,d ,i ,o) ∈ Succa,b

(1 + k × SG
Succ (c , d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 9 / 28

The FFSMDiff algorithm – Global similarity score

SG
Succ (a, b) =

1

2

∑
(c,d ,i ,o) ∈ Succa,b

(1 + k × SG
Succ (c , d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 9 / 28

The FFSMDiff algorithm – Global similarity score

SG
Succ (a, b) =

1

2

∑
(c,d ,i ,o) ∈ Succa,b

(1 + k × SG
Succ (c , d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 9 / 28

The FFSMDiff algorithm – Global similarity score

SG
Succ (a, b) =

1

2

∑
(c,d ,i ,o) ∈ Succa,b

(1 + k × SG
Succ (c , d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 9 / 28

The FFSMDiff algorithm – Global similarity score

SG
Succ (a, b) =

1

2

∑
(c,d ,i ,o) ∈ Succa,b

(1 + k × SG
Succ (c , d))

|
∑out

r (a)−
∑out

u (b)|+ |
∑out

r (b)−
∑out

u (a)|+ |Succa,b|

Figure: Global similarity score 4

Global similarity score (Outgoing and incoming transitions)

Pairwise similarity based on surrounding matching transitions and connected state pairs.

Attenuation ratio k gives precedence to the closest state pairs.

Matching transitions and distinct transitions.

4Walkinshaw and Bogdanov (2013)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 9 / 28

The FFSMDiff algorithm – Similarity score (Running example)

SG
Succ (St,St) =

1

2
×

1 + k × SG
Succ (Bo,Po)

2 + 2 + 1
= 0.12

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs and their similarity scores

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 10 / 28

The FFSMDiff algorithm – Similarity score (Running example)

SG
Succ (Pa,Pa) =

1

2
×

3 + k × [SG
Succ (St, St) + SG

Succ (Bo,Po) + SG
Succ (Pa,Pa)]

0 + 0 + 3
= 0.58

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs and their similarity scores

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 10 / 28

The FFSMDiff algorithm – State similarity (Running example)

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs

pair(St, St) = 0.12

pair(St,Po) = 0.29

pair(St,Pa) = 0.28

pair(Bo,St) = 0.11

pair(Bo,Po) = 0.31

pair(Bo,Pa) = 0

pair(Pa,St) = 0.29

pair(Pa,Po) = 0.11

pair(Pa,Pa) = 0.58

Figure: Pairwise state similarity

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 11 / 28

The FFSMDiff algorithm – State similarity (Running example)

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs

pair(St, St) = 0.12

pair(St,Po) = 0.29

pair(St,Pa) = 0.28

pair(Bo,St) = 0.11

pair(Bo,Po) = 0.31

pair(Bo,Pa) = 0

pair(Pa,St) = 0.29

pair(Pa,Po) = 0.11

pair(Pa,Pa) = 0.58

Figure: Pairwise state similarity

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 11 / 28

The FFSMDiff algorithm – State similarity (Running example)

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs

pair(St, St) = 0.12

pair(St,Po) = 0.29

pair(St,Pa) = 0.28

pair(Bo,St) = 0.11

pair(Bo,Po) = 0.31

pair(Bo,Pa) = 0

pair(Pa,St) = 0.29

pair(Pa,Po) = 0.11

pair(Pa, Pa) = 0.58

Figure: Pairwise state similarity

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 11 / 28

The FFSMDiff algorithm – State similarity (Running example)

Start
Game

Bowling
Game Pause

Start/1

Exit / 0

Pause/1

Start/1

Exit/1

Exit/1

Pause/0

Start/0

Pause / 1

Start
Game

Pong
Game Pause

Start/1

Exit / 1

Pause/1

Start/1

Exit/0
Pause/0

Exit/1

Pause/0

Start/0

Figure: Two examples of product FSMs

pair(St, St) = 0.12

pair(St,Po) = 0.29

pair(St,Pa) = 0.28

pair(Bo,St) = 0.11

pair(Bo, Po) = 0.31

pair(Bo,Pa) = 0

pair(Pa,St) = 0.29

pair(Pa,Po) = 0.11

pair(Pa, Pa) = 0.58

Figure: Pairwise state similarity

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 11 / 28

The FFSMDiff algorithm – Incorporating variability

Bowling*Pong
 Exit/1

Start*Start

 Exit/0

Start/1

Figure: Fragment of the FFSM learnt from two products of the AGM SPL.

Product configuration – Example

ρBowling = (AGM ∧ A ∧M ∧ L ∧ V ∧ Y ∧ P ∧W ∧ ¬S ∧ ¬B ∧ ¬N)
ρPong = (AGM ∧ A ∧M ∧ L ∧ V ∧ Y ∧ P ∧ N ∧ ¬S ∧ ¬B ∧ ¬W)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 12 / 28

The FFSMDiff algorithm – Incorporating variability

Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Bowling*Pong
(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)Exit[(N&¬S&¬B&¬W)]/1

Start*Start
[True]

Exit[(W&¬S&¬B&¬N)]/0

Figure: Fragment of the FFSM learnt from two products of the AGM SPL.

Simplified configuration – Example

ρBowling = (W ∧ ¬S ∧ ¬B ∧ ¬N)
ρPong = (N ∧ ¬S ∧ ¬B ∧ ¬W)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 12 / 28

Empirical Evaluation

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 13 / 28

Empirical evaluation – Research Questions (RQ)

(RQ1) Is our automated technique effective in learning succinct family models
compared to the total size of product analyzed?

(RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

(RQ3) Is our automated technique effective in learning succinct family models
compared to hand-crafted family models?

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 14 / 28

Empirical evaluation – Research Questions (RQ)

(RQ1) Is our automated technique effective in learning succinct family models
compared to the total size of product analyzed?

I Size of learnt FFSM ≤ Size of products pairs

(RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

(RQ3) Is our automated technique effective in learning succinct family models
compared to hand-crafted family models?

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 14 / 28

Empirical evaluation – Research Questions (RQ)

(RQ1) Is our automated technique effective in learning succinct family models
compared to the total size of product analyzed?

(RQ2) Is the size of learnt family models influenced by the amount of feature reuse?
I Size of learnt FFSM vs. Feature reuse

(RQ3) Is our automated technique effective in learning succinct family models
compared to hand-crafted family models?

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 14 / 28

Empirical evaluation – Research Questions (RQ)

(RQ1) Is our automated technique effective in learning succinct family models
compared to the total size of product analyzed?

(RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

(RQ3) Is our automated technique effective in learning succinct family models
compared to hand-crafted family models?

I Size of FFSMs learnt from the whole family vs. hand-crafted FFSM
I Size of FFSMs learnt from products pairs vs. hand-crafted FFSM

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 14 / 28

Empirical evaluation – Subject systems 5

SPL Number of Sum total of states in

ID Name Features Valid config. FFSM All products

AGM Arcade Game Maker 13 6 6 21

WS Wiper System 8 8 13 56

VM Vending Machine 9 20 14 207

Total number of products: 34 products

Table: Description of the SPLs under learning

5Fragal et al. (2017); Classen (2010)
Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 15 / 28

Analysis of Results (FFSM learnt vs. Size of product pairs)

RQ1) Is the FFSMDiff algorithm effective in learning succinct family models
compared to the total size of the products?

5

10

15

20

25

AGM VM WS
Software product line

N
um

be
r o

f s
ta

te
s

Model
FFSM

All products

Figure: We found statistically significant difference (p < 0.01) and large effect sizes between the
size of learnt FFSMs and total size of products pairs

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 16 / 28

Analysis of Results (FFSM learnt vs. Size of product pairs)

RQ1) Is the FFSMDiff algorithm effective in learning succinct family models
compared to the total size of the products?

5

10

15

20

25

AGM VM WS
Software product line

N
um

be
r o

f s
ta

te
s

Model
FFSM

All products

Figure: The size of learnt FFSMs is at most equal to the total size of products pairs analyzed

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 16 / 28

Analysis of Results (FFSM learnt vs. Feature reuse)

RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

Figure: We found a strong negative correlation between FFSM size and amount of feature reuse

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 17 / 28

Analysis of Results (FFSM learnt vs. Feature reuse)

RQ2) Is the size of learnt family models influenced by the amount of feature reuse?

Figure: FFSMs learnt from products implementing a similar set of features tend to be more succinct

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 17 / 28

Analysis of Results (FFSMs learnt from the whole family)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?

Hand-crafted AGM

Hand-crafted VM

Hand-crafted WS

3

4

5

6

7

8

9

10

11

12

13

14

10 20 30 40 50 60 70 80 90 100
Percentage of products analyzed

FF
SM

 s
iz

e

SPL AGM VM WS

Figure: Two FFSMs were learnt with fewer states and one with the same original size

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 18 / 28

Analysis of Results (FFSMs learnt from products pairs)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?

Hand-crafted AGM

Hand-crafted VM
Hand-crafted WS

0
2
4
6
8

10
12
14
16
18
20
22

AGM VM WS
Software product line

N
um

be
r o

f s
ta

te
s

Figure: We found significant differences (p < 0.01) and large effect sizes for two SPLs

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 18 / 28

Analysis of Results (FFSMs learnt from the AGM SPL)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?

Start/1

Start/1

Start/1Start/1
Pause/1

Save[S]/1

Start/1

Pause/1
Save[S]/1

Save[S]/1

Pause/1
Pause[W]/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Start/0

Exit/0
Pause[!W]/1
Pause[W]/0

Save/0
Exit[!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1
Exit[S]/1

Pause[!W]/0

Start/1
Save Game[S]Pause Game

Pong[N]

Bowling[W]

Brickles[B]

Star t Game

Figure: The AGM FFSM with separated states

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 18 / 28

Analysis of Results (FFSMs learnt from the AGM SPL)

RQ3) Is the FFSMDiff algorithm effective in learning succinct family models
compared to hand-crafted family models?

Save[(B||N)&&S]/1

Exit[B]/0

Start/1
Save[W&&S]/1

Pause/1

Pause[W]/1

Exit[N]/1

Save[B]/0

Pause/0

Save[N]/1

Exit/1
Exit/0

Pause[!W]/1
Pause[W]/0

Save/0

Exit[W&&!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1

Exit[W&&S]/1

Pause[!W]/0

Start/1
Save Game[S]Pause GameBrickles*Pong*Bowling

[B| |N| |W]Star t Game

Figure: Alternative FFSM learnt from the AGM SPL presented fewer states a

aFragal (2017)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 18 / 28

Final remarks

Final remarks

The creation and maintenance of family models is chllenging

FFSMDiff is an effective algorithm
I Learning fresh FFSMs from products pairs
I Including an FSMs into an existing FFSM model
I Especially if there is high feature reuse

Our work complements reverse engineering techniques and SPL analysis

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 19 / 28

Final remarks

...
 SUT

 Prod n
 SUT

 Prod 02
 SUT

 Prod 01

Product model

Prod 1

Product model

Prod {1,2}

Family model

SPL

...
Product model

Prod n

FFSMDiff

out

in

Σsize() ≥

Figure: The FFSMDiff algorithm is available online at
https://damascenodiego.github.io/learningFFSM/

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 20 / 28

https://damascenodiego.github.io/learningFFSM/

Future work

Configuration simplification techniques

Context m

Presence Condition p

Simplif ed Presence Condition simp(p,m)

Figure: Configuration simplification techniques a

avon Rhein et al. (2015)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 21 / 28

Future work

Configuration selection/prioritization

Greedy Code

1−wisePair−wiset−wise

Technique

Automatic Selection Coverage

Meta-Heuristic Feature Interaction

Local Search

Manual
Selection

Population-Based
Search

Semi-Automatic
Selection

Figure: Techniques for configuration selection a

aVarshosaz et al. (2018)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 22 / 28

Future work

Active learning of family models

Active family model
learning

Figure: Active learning of FFSMs a

aVaandrager (2017)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 23 / 28

Future work

Learning hierarchical FFSMs

AGM

M e n u
Rules

Start/0

RegionA

Exit(N)/1

Exit[S&&W]/1

Save[W]/1

Save[(B||N)&&S]/1

Pause/1

Start/1

RegionM

Pause[W]/1

Save[B]/0
Save[N]/1

Exit/1

SaveGame[S]
Save,Exit/0
Pause[W]/0
Pause[!W]/1

PauseGame
Pause/0

StartGame
Save[S]/0
Pause[!W]/0
Exit[!W||S]/0
Exit[W&&!S]/1

R3[W]

R2[N]

Pong

Bowling
Exit[!S]/0

Brickles
Exit/0

R1[B]

Figure: Hierarchical FFSM a

aFragal et al. (2019)

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 24 / 28

Thank you!

https://damascenodiego.github.io/learningFFSM/

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 25 / 28

https://damascenodiego.github.io/learningFFSM/

References I

Classen, A. (2010). Modelling with fts: a collection of illustrative examples.

Fragal, V. H. (2017). Automatic generation of configurable test-suites for software product lines. PhD
thesis, Universidade de São Paulo. [Online]
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012019-085746/.

Fragal, V. H., Simao, A., and Mousavi, M. (2019). Hierarchical featured state machines. Science of
Computer Programming, 171:67–88.

Fragal, V. H., Simao, A., and Mousavi, M. R. (2017). Validated Test Models for Software Product
Lines: Featured Finite State Machines, pages 210–227. Springer International Publishing, Cham.

ter Beek, M. H., de Vink, E. P., and Willemse, T. A. C. (2017). Family-Based Model Checking with
mCRL2, pages 387–405. Springer, Berlin, Heidelberg.

Vaandrager, F. (2017). Model learning. Communications of the ACM, 60(2):86–95.

Varshosaz, M., Al-Hajjaji, M., Thüm, T., Runge, T., Mousavi, M. R., and Schaefer, I. (2018). A
classification of product sampling for software product lines. In Proceedings of the 22Nd
International Systems and Software Product Line Conference - Volume 1, SPLC ’18, pages 1–13,
New York, NY, USA. ACM.

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 26 / 28

http://www.teses.usp.br/teses/disponiveis/55/55134/tde-10012019-085746/

References II

von Rhein, A., Grebhahn, A., Apel, S., Siegmund, N., Beyer, D., and Berger, T. (2015).
Presence-condition simplification in highly configurable systems. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE ’15, pages 178–188, Piscataway,
NJ, USA. IEEE.

Walkinshaw, N. and Bogdanov, K. (2013). Automated comparison of state-based software models in
terms of their language and structure. ACM Transactions on Software Engineering and Methodology,
22(2):1–37.

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 27 / 28

Questions?

https://damascenodiego.github.io/learningFFSM/

Damasceno C.D.N. et al. (USP / Uni of Leicester) Learning from Difference @ SPLC 2019 September 6, 2019 28 / 28

https://damascenodiego.github.io/learningFFSM/

