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Optimization problems are at the heart of 
many software engineering tasks
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Solutions
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Search-based software engineering (SBSE)

• Problem: Search space usually too large to enumerate all solutions

• Approach: Search guided by principles from the evolutionary theory

• Challenge: Search algorithms need to be custom-tailored to the problem at hand
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Model-Driven Optimization
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FitnessStudio: A two-tier framework of nested genetic algorithms 
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Limitations:

1. Relies on a single-objective

genetic algorithm on both tiers

2. Mutation operators are 

generated: from scratch and 

without additional user input



Our Contribution
A model-driven optimization technique to automatically 

generate efficient mutation operators with support for:

1. Multiple optimization criteria

2. User-provided domain knowledge
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Model Driven-Optimization



Model-Driven Optimization

• Model-driven principles to bridge the abstraction gap between:

• The low-level SBSE implementations 

• Declarative specifications of optimization problems (e.g., models)

• Graph-transformations languages (e.g., Henshin)
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Henshin: Japanese for Transformation
https://www.eclipse.org/henshin/Vector-based encoding

Chromosome 0 1 1 0

Cost 5 1 9 7

Model-based encoding

Artifact 1
Cost:5

Artifact 2
Cost:1

Artifact 3
Cost:9

Artifact 4
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Solution

https://www.eclipse.org/henshin/


The Next Release Problem
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Customers

Software
artifacts

Artifact 1
Cost:5

Artifact 2
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Artifact 3
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Customer b
Importance:2
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Importance:1
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Importance:3

Find the “optimal” selection of artifacts w.r.t.

Requirements Requirement #2Requirement #1 Requirement #3



The Next Release Problem
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Example of solution: Release artifacts 1, 2 
Cost = 5+1
Satisfaction = 1*100% + 2*50%   + 3*0%

Customers

Software
artifacts

Artifact 1
Cost:5

Artifact 2
Cost:1

Artifact 3
Cost: 7

Artifact 4
Cost:9

Customer b
Importance:2
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Customer c
Importance:3

Requirements Requirement #2Requirement #1 Requirement #3

= 6
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The Next Release Problem
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Example of solution: Release artifacts 2, 3, 4 
Cost = 1+7+9 
Satisfaction = 1*0%     + 2*100% + 3*100%

Customers

Software
artifacts

Artifact 1
Cost:5

Artifact 2
Cost:1

Artifact 3
Cost: 7

Artifact 4
Cost:9
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Importance:2
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Requirements Requirement #2Requirement #1 Requirement #3

= 17
= 5



The Next Release Problem
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Example of solution: Release artifacts 2, 3
Cost = 1+7 
Satisfaction = 1*0%     + 2*100% + 3*100%

Customers

Software
artifacts

Artifact 1
Cost:5

Artifact 2
Cost:1

Artifact 3
Cost: 7
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Cost:9
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= 8
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Can we do 
better?



Transformation Rules

Metamodel for the next release problem (NRP)

The Next Release Problem
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The Next Release Problem
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A1
Cost:5

A2
Cost:7

A3
Cost:9

A4
Cost:1

Inconsistent Solution

?

A1
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A2
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Solution 4

1x addSingleSa (A1) ●

2x addSingleSa (A4 then A1) ●
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1x removeSingleSa ●
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Our Contribution
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(A) Support for multi-objective problems

• FitnessStudio aims at a single objective

• Inapplicable to problems with multiple objectives (e.g., NRP)

• Our contribution #1: Improved fitness functions

• Lower tier: Relies on an arbitrary number of functions

• Upper tier: Hypervolume for lower-tier solutions
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https://doi.org/10.1109/ACCESS.2019.2927418

https://doi.org/10.1109/ACCESS.2019.2927418


(B) Support for user-defined domain knowledge

• FitnessStudio generates mutation operators only from scratch (a.k.a. full automation)

• Our contribution #2: User-specified rule set
• At large scale problems, we need "the best of both worlds“:

• Useful, but not necessarily optimal mutation operators 
• Continuous improvement of mutation operators

• Our contribution #3: Configuration of upper-tier algorithm
• Assign a weight to each higher-order mutation rule
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fixedXORgen: Combining generated 
with user specified fixed rules



Evaluation and Results



Evaluation
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Table: Instances of the next release problem

• Subject: The Next Release Problem (NRP)

• RQ1: How does the mutation operator generated by our framework impact performance, 

compared to a manually specified operator?

• Performance = Result quality and Execution time

• Focus: multi-objective NRP

• RQ2: To which extent does the customization with user-provided domain knowledge impact the 

performance?

• Isolated user-provided domain knowledge 

• Focus: single-objective NRP
https://jmetal.github.io/jMetal/
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Results for RQ1 (Performance Compared to Manually Specified Operators)
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Results for RQ1 (Performance Compared to Manually Specified Operators)
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Creation/Deletion of a single
selected edge

�

Creation/Deletion of multiple selected edges 
(aka. larger "steps" in the search space)

MDO



Results for RQ2 (Impact of Domain Knowledge on Performance)
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Final Remarks



Final Remarks
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DOI: 10.5281/zenodo.6645808 https://github.com/nielsvharten/fitnessstudio-nrp

https://doi.org/10.5281/zenodo.6645808
https://github.com/nielsvharten/fitnessstudio-nrp


Niels van Harten
Radboud University Nijmegen
Nijmegen, The Netherlands
niels@vharten.com

CDN (Diego) Damasceno
Radboud University Nijmegen
Nijmegen, The Netherlands
https://damascenodiego.github.io/
d.damasceno@cs.ru.nl

Daniel Strüber
Chalmers | University of Gothenburg (SE)
Radboud University Nijmegen (NL)
https://www.danielstrueber.de/
danstru@chalmers.se

van Harten, Damasceno and Strüber (2022)

Euromicro DSD/SEAA 2022
Aug. 31 – Sep. 2, 2022

Questions?

Thank you!
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