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Active Learning: Why?
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[Aichernig, Mostowski, Mousavi, Tappler and Taromirad. 
Model Learning and Model-Baed Testing]

Model? What model?



Active Learning: What?
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[Dana Angluin. Learning regular sets from queries and counterexamples.]
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Active Learning: How?
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Complete: ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑆𝑆𝑟𝑟 � 𝑝𝑝 ≅ 𝑝𝑝′ ⇒ ∀𝑖𝑖 ∈ 𝐼𝐼 𝑝𝑝. 𝑖𝑖 ≅ 𝑝𝑝′. 𝑖𝑖

Consistent: ∀𝑝𝑝 ∈ 𝑆𝑆𝑟𝑟 . 𝐼𝐼𝑟𝑟 ∃𝑝𝑝′ ∈ 𝑆𝑆𝑟𝑟 � 𝑝𝑝 ≅ 𝑝𝑝′
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Adaptive Learning 
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swPrm
Anything redundant?

[Damasceno, M.R. Mousavi and A. Simao.  Learning to Reuse: Adaptive Model Learning for Evolving Systems. iFM’19 ]

https://www.cs.le.ac.uk/people/mm789/pub/mousavi-ifm-2019.pdf
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Efficiency-Precision Trade-Off

• Family model
• A specification showing the behavior of various products

• Analysis of all products of an SPL is usually costly

• Product sampling:

Sampling
Efficiency

Precision



Product Sampling Methods for Software Product Lines

• Sampling algorithms
• Greedy algorithms
• Meta-heuristic algorithms

• Coverage criteria
• Code coverage
• Feature interaction coverage (T-wise sampling)
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Subject Systems

Subject system Minimum |S| Maximum |S| Average |S|

The Minepump SPL 9 21 13.86

The BCS SPL 14 864 117.25



The Total Number of Rounds

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

p-value

The Minepump SPL 18.005 30.000 +39.9% 2.845e-204

The BCS SPL 16.910 22.000 +23.1% 7.034e-145



The Total Number of Resets

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

p-value

The Minepump SPL 3,838,078 4,429,400 +13.3% 1.095e-182

The BCS SPL 77,339,830 83,332,932 +7.1% 7.259e-120



The Number of Resets in MQs and EQs

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

The Minepump SPL 78,846 73,937 -6.7%

The BCS SPL 757,186 642,412 -17.9%

MQ resets:

EQ resets:

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

The Minepump SPL 3,759,232 4,355,463 +13.6%

The BCS SPL 76,582,644 82,690,520 +7.3%



The Total Number of Input Symbols

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

p-value

The Minepump SPL 24,950,092 28,637,112 +12.8% 5.103e-182

The BCS SPL 739,258,253 791,674,093 +6.6% 7.150e-115



The Number of Input Symbols in MQs and EQs

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

The Minepump SPL 433,967 401,613 -8.1%

The BCS SPL 5,826,720 4,804,082 -21.3%

MQ input symbols:

EQ input symbols:

SUL PL* method, average Non-adaptive learning 
method, average

Improvement 
percentage

The Minepump SPL 24,516,124 28,235,499 +13.1%

The BCS SPL 733,431,533 786,870,011 +6.7%



Comparing the Learning Methods

• PL* can improve the learning efficiency in terms of:
• The total number of learning rounds
• The total number of resets
• The total number of input symbols

• PL* increases the number of MQs.
• PL* reduces the total cost of learning by reducing the number of EQs.

The number of EQ resets > 10 × the number of MQ resets
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The Product Learning Order

• Observation: the product learning order can affect the efficiency of the PL* method.

• Based on the results of the experiments, a heuristic is presented to determine the 
desired learning orders.

Product Learning Order

Random

Arbitrary

Determined using heuristic methods



The Product Learning Order

• Observation: when the number of new non-mandatory features that are added
simultaneously is small, the efficiency of the PL* method increases.

A product learning order (a sequence of products in a sample)O = p1, p2, … , pn

i < j The FSM of pi must be learned earlier than the FSM of pj

Fi The number of new non-mandatory features added by 𝐩𝐩𝐢𝐢

D = �
i=1

n

DiDi = �
0, if Fi = 0
1
Fi

, if Fi ≠ 0
Why 𝟏𝟏

𝐅𝐅𝐢𝐢
is used?



An Example from BCS SPL

16 products are sampled from BCS SPL using 3-wise sampling method.

Number of non-mandatory features: 6



Learning order: 3 , 1 , 7 , 6 , 15 , 9 , 11 , 10 , 16 , 13 , 4 , 14 , 12 , 2 , 5 , 8

Status_LED
LED_Finger_Protection
Manual_Power_Window

Automatic_Power_Window Manual_Power_Window
Automatic_Power_Window
Central_Locking_System

The total number of resets (PL*): 𝟕𝟕𝟕𝟕.𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔 𝐃𝐃 =
𝟏𝟏
𝟑𝟑

+
𝟏𝟏
𝟏𝟏

+
𝟏𝟏
𝟏𝟏

+
𝟏𝟏
𝟏𝟏
≈ 𝟑𝟑.𝟑𝟑𝟑𝟑

Learning order: 10 , 12 , 11 , 8 , 6 , 15 , 16 , 13 , 4 , 3 , 14 , 5 , 9 , 7 , 2 , 1

Status_LED
LED_Finger_Protection
LED_Power_Window
Manual_Power_Window
Automatic_Power_Window
Central_Locking_System

The total number of resets (PL*): 𝟖𝟖𝟖𝟖.𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔 𝐃𝐃 =
𝟏𝟏
𝟔𝟔 ≈ 𝟏𝟏.𝟏𝟏𝟕𝟕

High efficiency:

Low efficiency:

F1 = 3

F2 = 1

F3 = 1

F4 = 1

F1 = 6

Status_LED
LED_Power_Window
Manual_Power_Window
Automatic_Power_Window



More Examples

Learning order 𝐅𝐅𝟏𝟏 𝐅𝐅𝟖𝟖 𝐅𝐅𝟑𝟑 𝐅𝐅𝟒𝟒 𝐅𝐅𝟕𝟕 𝐅𝐅𝟔𝟔 𝐅𝐅𝟕𝟕 Total resets 
(× 𝟏𝟏𝟏𝟏𝟔𝟔)

𝐃𝐃

3, 1, 7, 6, 15, 9, 11, 10, 16, 13, 4, 14, 12, 2, 5, 8 3 1 1 1 0 0 0 75.1 3.33

2, 11, 12, 3, 16, 6, 10, 5, 14, 8, 1, 7, 15, 9, 4, 13 4 1 1 0 0 0 0 76.6 2.25

7, 16, 2, 15, 11, 3, 6, 12, 13, 10, 14, 9, 8, 1, 4, 5 3 2 0 0 0 1 0 77.3 1.83

10, 12, 11, 8, 6, 15, 16, 13, 4, 3, 14, 5, 9, 7, 2, 1 6 0 0 0 0 0 0 82.0 0.16

The total number of resets in non-adaptive learning method: 83.0 × 106



Correlation Between Parameter D and the Number of Resets

SUL r p-value

The Minepump SPL -0.305 1.127e-05

The BCS SPL -0.431 1.963e-10



Correlation Between Parameter D and the Number of Input Symbols

SUL r p-value

The Minepump SPL -0.301 1.484e-05

The BCS SPL -0.403 3.429e-09
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