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ABSTRACT
Feature interactions are an intricate phenomenon: they can add
value to software systems, but also lead to subtle bugs and com-
plex, emergent behavior. Having a clearer understanding of fea-
ture interactions in practice can help practitioners to select ap-
propriate quality assurance techniques for their systems and re-
searchers to guide further research efforts. In this paper, we present
pdparser, a Python-based tool for analysing structural feature in-
teractions in software systems developed with C and C++ prepro-
cessor. Our tool relies on a lightweight methodology to quantify
the frequency of pairwise and higher-order feature interactions
and the percentage of code affected by them. We showcase the
individual characteristics brought forward by the automated analy-
sis of one toy example and two open-source text editors: Vim and
Emacs. The source code and a demo video are available on GitHub
at https://github.com/dkorsman/pdparser.
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1 INTRODUCTION
In variability-intensive systems, end-users and engineers typically
have configuration spaces with thousands of features to choose [3].
Being able to customize programs by removing functionalities and
adding only what is really needed can have benefits, such as making
programs less complicated, saving storage space, or having a smaller
attack vector. However, this also leads to additional complexity and
concerns.
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Even when there is a small number of options, the number of
valid configurations can be so large that it becomes practically
impossible to exhaustively build and analyze all product variants.
Moreover, certain configuration selections may also expose situ-
ations where features conflict with each other or are required to
work together when enabled at once. These situations are known as
feature interactions [17]. Having a bigger numbers of features inter-
acting can lead to additional problems where unexpected behavior
may emerge from sets of three or more features jointly selected,
namely higher-order feature interactions. For instance, a database
system with features for collecting statistics, lock contention, and
user authentication that can interact when logging statistics about
locks removed by administrator users.

As a source of subtle bugs and emergent behavior, feature in-
teractions are still an understudied topic. In the Linux kernel, em-
pirical evidence has raised the awareness of its community about
the fact that vulnerable functions have higher variability than non-
vulnerable ones [10], the amount of potentially harmful but still
untreated configuration-dependent warnings [14], and the impact
of preprocessor blocks nesting on code reasoning, understandabil-
ity and readability [9]. Having systematic support for reasoning
about feature interactions in existing projects could be useful for
researchers and practitioners.

In this paper, we present a Python-based tool for automated rea-
soning of structural feature interactions in preprocessor directives
of programs written in C and C++. Using one toy example and two
open-source text editors – Vim and Emacs, we experiment with
pdparser to showcase its functionalities and suitability to analyze
realistic C/C++ source code and handling syntactic peculiarities
known to exist in the wild.

Our tool can be useful for both researchers and practitioners,
especially those interested in software product lines [3]. Researchers
can use our tool for empirical research, quantifying the nature of
feature interactions “in the wild”. The results of such research can
foster further software analysis and testing techniques that are
tailored to real-life projects (e.g., focusing either on pairwise or
higher-order interactions). Furthermore, our tool can be used to
identify projects suitable for benchmarking [19], in the sense that
they contain a suitable (i.e., typical or particularly large) number of
feature interactions. Practitioners can use our tool to understand
the characteristics of feature interactions in their projects, allowing
them to steer their efforts to improve design and evolution [6]. In
particular, can use it to identify code sections that are error-prone
due to high numbers of interacting features and deep nesting of
code blocks, which should be carefully reviewed. Moreover, they
can choose appropriate analysis and testing techniques tailored to
the type of feature interactions in their projects.
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The rest of this paper is structured as follows. Section 2 discuss
some preliminary concepts in feature interactions and preproces-
sors. Section 3 presents works related to ours and how our tool
differs from them. Section 4 describes the functionalities and de-
sign of our tool. Section 5 presents an experiment performed to
showcase the functionalities of our tool. We conclude this paper in
section 6 with final remarks and ideas for future work.

2 BACKGROUND
Feature interactions have a certain design space [3], arising from
the different programming languages (e.g., C, C++, Java), their
supported feature implementation techniques (e.g., build systems,
preprocessors, aspects), the different possible types of interactions
(e.g., structural, control-flow-based), and their interaction orders
(e.g., feature-wise, pairwise, and higher-order) [4]. In this design
space, we focus on (i.) higher-order structural feature interactions
in software (ii.) written in the programming languages C and C++
(iii.) via preprocessor directives (such as #ifdef).

Preprocessor directives in C and C++ code follow a relatively
simple syntax, where a line in a source file either is a directive or is
not a directive. These are defined in the C and C++ standards [1, 2].
If the first non-whitespace character on a line is a hash symbol (#),
then it is a directive. The hash is followed by the instruction given
to the preprocessor, for example include or ifdef.

Nevertheless, preprocessor directives can get more complicated
than #ifdef and #ifndef. In fact, #ifdef X itself is shorthand
notation for #if defined(X). The #if directives function on a
constant expression that can consist of logic, comparison, and cer-
tain operators like defined. The #elif and #else directives can
also be used, and work as one might expect. A complex usage of
preprocessors is shown in Listing 1.

Listing 1: Example of complex preprocessor directives
#if defined(__linux__) || defined(__unix__)

/* Linux/Unix code ... */
#elif defined(_WIN32)

/* Windows code ... */
#else

/* Other code ... */
#endif

In this example, we have the second block of code included if the
following constraint holds: !(defined(__linux__) || defined(__unix__))

&& defined(_WIN32). Similarly, the third block will be included when
!(defined(__linux__) || defined(__unix__)) && !defined(_WIN32) holds.

When parsing C and C++ files, our tool can extract the feature
identifiers trivially from #ifdef and #ifndef directives, and from
features checked by defined in #if and #elif directives. Our
tool reasons about #elif/#else blocks and combines them into
conditional expressions with logical operators as in the original
code. Moreover, we invested a considerable engineering effort to
address peculiarities of C code (e.g., comments and white spaces).

As of the time of writing, the GitHub platform alone has more
than one million C/C++ repositories available [11]. Preprocessor
directives are a widespread method for implementing feature vari-
ability in C and C++ programs [3]. Structural feature interactions
[4] provide means to reason about interactions from the source code
itself, as for interactions arising from nested #if and #ifdef blocks.

Hence, they address threats to validity in analysing interactions
dependent on execution aspects, such as input data.

3 RELATEDWORK
The most important related work direction is on extracting variabil-
ity information from preprocessor-based software implementations
[12, 13, 20] and feature interactions [9, 10, 18]. A state-of-the-art
tool in that direction is KernelHaven [13], which integrates four
different code extractors for addressing this task, namely Under-
taker [20], Code Block [13], srcML [7] and TypeChef [12].

Code extractor
name

Input files Implem.
Lang.

Preproc.
Block

Annot.
AST

Quant.
Report

Undertaker [20] *.c, *.h, *.s C++ X
Code Block [13] *.c, *.h, *.s Java X

srcML [7] *.c, *.h Java X
TypeChef [12] *.c Java X
pdparser [5] *.c, *.h, *.cpp, *.hpp,

*.cxx, *.m, *.cc
Python X X

Table 1: Code Extractors in KernelHeaven [13] vs. pdparser
As summarized in Table 1, these tools differ in their supported in-

put formats, implementation language, granularity (e.g., preproces-
sors in code blocks, abstract syntax trees annotated with variability
information, quantitative analysis). Black cells indicate the char-
acteristics present in a given code extractor. While these tools are
fundamentally different, they all work on top of variability informa-
tion from source code elements, such as preprocessors [13, 20] and
presence conditions in abstract syntax trees [7, 12]. This informa-
tion is typically enough for some types of analyses, as in anomaly
detection. However, so far, they have not been used to characterize
quantitative aspects of feature interactions. Our tool fills in this
gap by supporting the characterization of feature interactions in C
and C++ source code.

Moreover, due to Python’s consistent grown in popularity [21],
we chose to implement pdparser in Python to target a wider au-
dience of software engineers and potentially data scientists. Our
work improves upon the state-of-the-practice by lifting the capacity
of extracting preprocessor annotations, feature interactions, and
include guards to the Python ecosystem. Thus, data scientists will
be able to incorporate variability information in their pipelines and
build machine learning-based variability analysis technologies.

In the context of feature interactions, combinatorial testing of-
fers one effective alternative for sampling products [15]. Pairwise
and model-based test criteria have been previously investigated
and shown capacity of achieving a higher coverage of feature inter-
actions at a fraction of cost when compared to testing all feature
interactions [16]. Deep nesting levels of preprocessors have been
known to suggest feature interactions and lead to higher difficulties
in code reasoningy [9]. Additionally, they have been associated
with higher number of vulnerabilities [10]. For an overview on
feature interaction, we refer the reader to the systematic mapping
by Soares et al. [17].

4 DESCRIPTION OF THE TOOL
On a high level, our methodology consists of parsing the C/C++
source files of a project, extracting preprocessor directives within
these files, and reasoning about these directives. In this section,
we discuss the functionalities provided by our tool, its design, and
typical syntax.
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4.1 Tool Functionalities
Since our methodology does not have to “understand” C or C++
code, we designed the pdparser tool [5] purely based on parsing
preprocessors directives rather than writing or extending a full C or
C++ parser or compiler. Our tool provides a CLI where users have
access to the following functionalities:

4.1.1 Analyze all source code files in a C/C++ project. Our
tool enumerates and parses all files in one project directory that has
a recognized extension related to C or C++ (i.e., .c, .cpp, .h, .hpp,
.cxx, .m, .cc). The tool applies regular expressions to recognize
preprocessor directives, and track which lines of code are subject
to which conditions.

4.1.2 Analyze projects in batch mode. By default, our tool pro-
cesses one project at a time. Then, for processing multiple projects,
we provide a shell script that iterates over a list of projects and
reports their individual results.

4.1.3 Export the results in JSON format. For each analyzed
project, the tool returns JSON files with a rich set of information,
including: lists of identifiers for features, #include guards and
other #defines, the number of blocks and lines with each feature
interaction order and at each nesting level, the time taken to analyze
the code, and the total number of files and lines of code.

4.1.4 Visualize the variability information. The JSON files
with the results can be further processed to visualize the results.
Users can see the exact locations in the code where certain feature
interaction orders and nesting levels were found, and generate bar
plots for the frequency of feature interaction orders and nesting
levels.

4.1.5 Check occurrence of features in multiple projects.
From a set of results from different projects, users can create a file
that centralizes all information and check the number of projects
each feature appears in.

4.1.6 Project showcase and help menu for getting started.
The pdparser tool includes a test project to showcase its func-
tionalities. This test project has features with obvious names and
nesting levels to ease manual inspection. Moreover, there is a help
menu that lists all parameters available for usage.

4.2 Tool design
We designed our tool using the Python programming language,
and the native python libraries for regular expressions (re), and
arguments parsing (argparse). Our regular expressions were hand-
crafted in a iterative way with the support of several C/C++ projects
that we analyzed and then had their results manually inspected.

The architecture of our tool is organized as follows: (1) The
pdparser.py file provides a command line interface (CLI) for set-
ting the source projects to be analyzed and indicating the sets of in-
formation to be captured from the code. (2) The source_parser.py
file includes (2.a) the analyzer class for maintaining the parsing
state as a stack of nested preprocessors, and the regular expressions
that (2.b) parse different preprocessing annotations and (2.c) ex-
tracts features involved in a given preprocessor annotation. (3) The
count-project-features.py script that centralizes all features

extracted from a set of projects and the number of projects where
each feature appears in. (4) The run-all-projects.sh script en-
ables the analysis of multiple projects. (5) The test/ directory to
showcase and test the functionalities of the tool.

5 SHOWCASE EXPERIMENT: ANALYSING
THE TEXT EDITORS VIM AND EMACS

To illustrate the work of our tool in analysing C/C++ source code,
we performed an experiment with the showcase test example and
two open-source projects of text editors: Vim and Emacs. In Table 2,
we show the statistics about each subject analyzed, including the
number of lines of source code (SLOC) in the whole project and the
SLOC per file. Additionally, we report the time required to analyze
each project and the throughtput in terms of SLOC analyzed per
second. These results show that our tool can handle thousands of
files at a scale of seconds.

Project Hash SLOC SLOC/file Time (s) Throughput
emacs #8785d70 361,890 686.7 4.8 74,781.3
vim #accf4ed 391,635 1,445.1 6.5 59,993.4
test #ec86559 133 26.6 0.0 12,916.9

SLOC/file: Average number of SLOC per file Throughput: SLOC per seconds

Table 2: Performance of the parser

5.1 Number of features and code within each
nesting level

In terms of number of features involved, both projects have similar
frequencies of feature interaction orders. In particular, HOFIs tend
to occur at a lower rate when order interactions are considered
up to level 10. In constrast, in the Emacs, we noticed that feature
interaction with orders above 15 tended to increase again.
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Figure 1: Number of features involved

When the amount of code surrounded by preprocessors is ana-
lyzed, we see that, for higher nesting levels, there is fewer condi-
tional code. The frequency distribution is mostly the same in both
text-editors.
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Figure 2: Number of lines at each nesting level
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5.2 Syntax peculiarities found
Along this analysis process, we observed a few errors in the parsing
process that helped to improve our tool. In most cases, these errors
were humorous because we could see in which way the parser was
misled. Sometimes, however, they were a legitimate issue in the
source code of the studied projects. In particular, we discovered
two syntactic peculiarities in the source code of the text-editors
analyzed which we discuss in this section.

In the Vim project, we found the code fragment shown in List-
ing 2. Initially, this fragment deceived our parser by considering
the string "/*" as the starting point of a block comment. After
identifying this issue, we fixed our tool and successfully parsed the
remainder of this project. This code fragment can be found in the
Vim repository on GitHub [22].

Listing 2: Example with backslash character
static char *( except_tbl [][2]) = {

{"*", "star"},
{"g*", "gstar"},
{"[*", "[star"},
{"]*", "]star"},
{":*", ":star"},
{"/*", "/star"},
{"/\\*", "/\\\\ star"},
{"\"*", "quotestar"},
{"**", "starstar"},

When parsing the source code of the Emacs editor, we did not find
any parsing problems. However, we detected a code fragment using
preprocessors in an inconsistent but harmless ways to the code
behavior. In Figure 3, we show a snapshot for JSON file resulting
from the Emacs project.

Figure 3: Snapshot of the JSON file for the Emacs project

In the Emacs code, there is a file test/manual/etags/c-src/h.h
which has an annotation #else without any corresponding #if.
This file is also filled with meaningless fragments of code and test
cases, and this is in a test folder which contains more source files
in various programming languages that are also intended for test-
ing. Emacs is a general-purpose text editor, so this occurrence can
be easily explained. This code fragment can be found on the Emacs
repository which is mirrored on GitHub [8].

Listing 3: Example of #else without corresponding #if
/* comment */ #define ANSIC
#define ANSIC
#else

typedef void (proc) ();

6 FINAL REMARKS
We present pdparse, a tool for analysing higher-order feature in-
teractions in C and C++ source code. The source code and and a
demo video or our tool are available on GitHub [5] so that others
can reuse and repurpose it. As future work, we plan to assess the
scalability of our tool in a larger set of open source projects.
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