
Adaptive Behavioral Model Learning for Software Product Lines
(Artifact Submission)

ABSTRACT
In this submission, the artifacts of the paper “Adaptive Behavioral
Model Learning for Software Product Lines” (Submission number
16) are described. The provided artifacts include the structural
and behavioral models of subject systems, the source code artifacts,
experimental results, and source code for performing statistical tests
and drawing diagrams. In this submission, each of these artifacts is
explained. The steps required to replicate the experiments are also
described.

1 INTRODUCTION
In this submission, the artifacts of the paper “Adaptive Behavioral
Model Learning for Software Product Lines” (Submission number
16) are described. The artifacts include models of the subject sys-
tems, source code of the experiments, and statistical tests used. In
this paper, the structure of the benchmarks is described; the func-
tionality of the different parts of the source code is explained; and
the steps of the performed experiments are elaborated. We also
specify how the statistical tests are performed.

The artifact is available through the following URL:
https://github.com/sh-t-20/artifacts

2 SUBJECT SYSTEMS
The two subject systems used in the experiments are the Minepump
SPL and the BCS SPL. For each of these SPLs, there is a folder of
the same name in the experiments folder. The contents of these
folders are described below:

The Minepump SPL: The artifacts of the Minepump SPL are
available in the Minepump_SPL directory. This folder contains a file
named model.xml which is the feature model [7, 10] of this SPL.
Feature model files are available in “.xml” format [11] and are cre-
ated using the FeatureIDE [11] library. Model learning experiments
are performed using finite state machines (FSM) [4]. The FSM files
and the configuration files for the products in the sample are in
folder products_3wise. The FSM files are saved in “.dot” format
[3?] and the configuration files are in “.config” format [11].

The BCS SPL: The artifacts of the BCS SPL are stored in the
BCS_SPL folder. The model.xml file is the feature model of this
SPL. The FSM files for the BCS components are available in the
Complete_FSM_files folder. The component FSMs are created us-
ing the I/O transition systems which are available in [8]. The FSM
of each valid product, can be created by merging the FSMs of its
components.

3 THE SOURCE CODE ARTIFACTS
In the paper, the model learning experiments are performed us-
ing the ExtensibleLStarMealyBuilder class of the LearnLib [9]
library version 0.16.0. The source code artifacts of this paper are in

SPLC’22, 12-16 September, 2022, Graz, Austria
2022. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the ir.ac.ut.fml package from the src directory. The function
of classes in this package is described below:

The MergeMultipleFSMs class is used to produce the FSMs of
the BCS SPL products. The input parameters of this class are listed
below:

• -dir: Directory of the configuration files
• -dir2: Folder containing FSMs of SPL components
• -out: Output directory for storing FSMs of SPL products.
• -fm: Feature model

Using the MergeMultipleFSMs class, for each of the product con-
figuration files, the FSM files of its features are merged and the FSM
of that product is constructed. The configuration files of the BCS
SPL are available in the products_3wise folder of the BCS_SPL
directory. The FSM files for the components of the BCS SPL are
available in the Complete_FSM_files.

The LearningOrderSampling class, as input, takes a folder con-
taining the products sampled from an SPL (i.e., the subject system
SPLs). The products in this sample are learned based on different
random orders using the PL∗ method and the non-adaptive method.
For each learning order, the values of the learning cost metrics for
each learning method are measured and stored in a log file. By
running the FixedLearningOrder class, the products in a sample
are learned based on a fixed learning order using the PL∗ method.
This process is repeated several times and the values of the learning
cost metrics are stored in a log file. The Calculate order metric
class is used to calculate the values of parameter 𝐷 for a number
of random learning orders. After running this class, the calculated
values of parameter 𝐷 are stored in a log file.

The three classes ConvertToExcelFile, ConvertToExcelFile2
and ConvertToExcelFile3 are used in Experiments 4.1, 4.2.1 and
4.2.2, respectively, to convert the created log file to a “.csv” file.

4 REPLICATING THE EXPERIMENTS
To replicate the experiments, the repository must be downloaded.
All the files needed for these experiments are in the experiments
folder. The steps of replicating the experiments is described below:

4.1 Comparing the learning methods (RQ1-RQ3)
To replicate this experiment, the LearningOrderSampling class
must be run using the following parameters:

• -dir: Directory of the SPL products (sampled products)
• -out: The output directory (the log file will be saved in this
directory)

• -sot2: A folder for storing observation tables and learned
FSM files

It is not necessary to specify the values of other arguments because
they have default values. If the “-help” argument is used, the help
menu is displayed. The number of learning orders tested is deter-
mined using the samples_count variable, which in this experiment
is set to 200.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SPLC’22, 12-16 September, 2022, Graz, Austria

The learning orders used and their corresponding metric val-
ues, which are stored in the log file, must be saved as a “.csv” file.
Each row of this “.csv” file contains a learning order and the corre-
sponding learning cost metric values (for the PL∗ method and the
non-adaptive method) To do this, the ConvertToExcelFile class
must be run with the following parameters:

• -file: The input log file
• -out: The output directory (the “.csv” file will be saved in
this directory)

The “.csv” files of this experiment are in the results_1 folder.

4.2 The effect of learning order (RQ4)
To evaluate the effect of product learning order on the efficiency
of the PL∗ method, two experiments are performed. Experiment
4.2.1 shows that the order of learning products can affect the total
cost of learning in the PL∗ method. In Experiment 4.2.2, the value
of parameter 𝐷 is calculated for the 200 learning orders used in
Experiment 4.1. At the end of this experiment, the Pearson corre-
lation coefficient between 𝐷 and the learning cost metrics can be
calculated (using the Python codes explained in 5).

4.2.1 The effect of learning order on the efficiency of the PL∗ method.
To replicate this experiment, a fixed learning order must first be
considered. This learning order is stored in a variable of type int ar-
ray (called learning_order_array) in the FixedLearningOrder
class. The parameters required to run this class are similar to the
parameters described for the LearningOrderSampling class. Af-
ter running the FixedLearningOrder class, the measured values
for the learning cost metrics are stored in a log file. Using the
ConverToExcelFile2 class, these values can be stored as a “.csv”
file. The above steps must be performed for two learning orders: an
order with a high learning efficiency (order 1) and an order with
a relatively low learning efficiency (order 2). To determine these
two learning orders, the results of Experiment 4.1, which are sorted
by efficiency, can be used. The sorted “csv” files of Experiment 4.1
are in the results_1 directory. The results of Experiment 4.2.1 for
both subject SPLs are available in the results_2_1 directory.

4.2.2 Calculating the parameter D. In this experiment, using the
CalculateOrderMetric class, the values of parameter 𝐷 is calcu-
lated for the 200 learning orders used in Experiment 4.1. The pa-
rameters required to run the CalculateOrderMetric class are sim-
ilar to the parameters explained for the LearningOrderSampling
class. In order for random learning orders produced in this ex-
periment and Experiment 4.1 to be the same, the following con-
ditions must be considered for the CalculateOrderMetric and
LearningOrderSampling classes:

• The initial value of the seed must be the same in both classes.
The seed value is stored in a long variable of the same name.

• The number of random learning orders generated in both
classes must be the same. The number of product learning
orders is stored in a variable called samples_count.

After running the CalculateOrderMetric class, the values cal-
culated for parameter 𝐷 are stored in a log file. Then, using the
ConvertToExcelFile3 class, theses values can be saved as a “.csv”
file. The results of Experiment 4.2.2 are available as “.csv” files in
the results_2_2 folder.

5 STATISTICAL TESTS
The source codes for performing statistical tests and plotting di-
agrams are in the SPL_Learning.ipynb file (which is located in
the statistical_tests folder). These codes are written in Python
using the Jupyter Notebook. To perform statistical tests, the “.csv”
files generated in the experiments described in Section 4 are first
loaded using into DataFrames using the read_csv method of the
Pandas [12] library. Statistil tests are performed using the Scipy [6]
library. The Matplotlib [5] library is used to draw the diagrams.

6 LICENSING
The artifacts are all available under GNU Public License 3.0. It makes
use of the following two repositories, which are also available under
the same license and are properly attributed in the artifact:

https://github.com/damascenodiego/DynamicLstarM [1]
https://github.com/damascenodiego/learningFFSM [2]

REFERENCES
[1] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and Adenilso

da Silva Simão. 2019. Learning to Reuse: Adaptive Model Learning for Evolving
Systems. In Integrated Formal Methods - 15th International Conference, IFM 2019,
Bergen, Norway, December 2-6, 2019, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 11918), Wolfgang Ahrendt and Silvia Lizeth Tapia Tarifa (Eds.). Springer,
138–156. https://doi.org/10.1007/978-3-030-34968-4_8

[2] Carlos Diego Nascimento Damasceno, Mohammad Reza Mousavi, and Adenilso
da Silva Simão. 2021. Learning by sampling: learning behavioral family models
from software product lines. Empir. Softw. Eng. 26, 1 (2021), 4. https://doi.org/10.
1007/s10664-020-09912-w

[3] Emden R. Gansner and Stephen C. North. 2000. An open graph visualization
system and its applications to software engineering. SOFTWARE - PRACTICE
AND EXPERIENCE 30, 11 (2000), 1203–1233.

[4] Arthur Gill et al. 1962. Introduction to the theory of finite-state machines. (1962).
[5] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science

& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55
[6] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001–. SciPy: Open source

scientific tools for Python. http://www.scipy.org/
[7] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[8] Sascha Lity, Remo Lachmann, Malte Lochau, and Ina Schaefer. 2012. Delta-
oriented software product line test models-the body comfort system case study.
Technical Report 2012-07. TU Braunschweig.

[9] Harald Raffelt, Bernhard Steffen, and Therese Berg. 2005. LearnLib: a library for
automata learning and experimentation. In Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, FMICS ’05, Lisbon,
Portugal, September 5-6, 2005, Tiziana Margaria and Mieke Massink (Eds.). ACM,
62–71. https://doi.org/10.1145/1081180.1081189

[10] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. 2006.
Feature Diagrams: A Survey and a Formal Semantics. In 14th IEEE Interna-
tional Conference on Requirements Engineering (RE 2006), 11-15 September 2006,
Minneapolis/St.Paul, Minnesota, USA. IEEE Computer Society, 136–145. https:
//doi.org/10.1109/RE.2006.23

[11] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Sci. Comput. Program. 79 (2014), 70–85. https:
//doi.org/10.1016/j.scico.2012.06.002

[12] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

https://doi.org/10.1007/978-3-030-34968-4_8
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1109/MCSE.2007.55
http://www.scipy.org/
https://doi.org/10.1145/1081180.1081189
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.25080/Majora-92bf1922-00a

	Abstract
	1 Introduction
	2 Subject Systems
	3 The Source Code Artifacts
	4 Replicating the Experiments
	4.1 Comparing the learning methods (RQ1-RQ3)
	4.2 The effect of learning order (RQ4)

	5 Statistical Tests
	6 Licensing
	References

